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Abstract. In this paper, a coordinated charging strategy CCCS (Charging
Congestion probability based Charging Strategy) is proposed, which considers
the congestion probabilities of the charging stations (CSs), the charging costs of
the electric vehicles (EVs), the distance between EV and charging station and
EV users’ satisfactions. The coordinated charging issue is formulated as a
convex optimization problem, which can be solved to get the distributed
charging algorithms, based on which the communication system is further
proposed. In order to illustrate the performance, we put forward three bench-
marks. In the simulation, we combine the power grid i.e. MATPOWER and the
charging module together to build the simulation platform. Simulation results
show that CCCS performs well in terms of balancing the congestion probabil-
ities, reducing charging costs, and mitigating the impacts on the power grid
voltage.

Keywords: Congestion probability � Charging cost � Voltage level � Electric
vehicle � Smart grid

1 Introduction

In recent years, EV charging strategy is an important issue in smart grid [1]. The EV
charging strategy mainly contains two categories: centralized charging strategy and
decentralized charging strategy [2].

In the centralized category, a lot of EVs’ information is collected by a central unit,
which considers many constraints to make the comprehensive charging decisions. A.S.
Masoum et al. [3] proposed an online fuzzy coordination algorithm (OL-FCA) for the
EV charging, which aims at reducing the total cost of energy generation and associated
grid losses. In [4], a novel method for EV charging was put forward, which considers
the power grid constrains, the voltage as well as the power to avoid the distribution grid
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congestion while satisfying the charging requirements. A GVs (gridable vehicles)
concept was defined by Ahmed Yousuf Saber et al. [5], who also proposed an opti-
mization EV charging algorithm combining the V2G (vehicle-to-grid) technology to
reduce the cost and emissions of UC (unit commitment). In order to minimize the grid
operation cost while considering the EVs’ random charging behaviours, the stochastic
security-constrained unit commitment model is adopted [6]. In [7], the coordinated
charging of minimize distribution system losses is studied. A two-stage strategy is
proposed in [8]. In the strategy, the electricity price and demand at first by the control
center, and then the control center purchases the energy from the market, and dis-
patches it to each EVs.

The centralized strategies have the ability to solve the optimization problems
precisely, but they need a lot of computing resources to process the massive EV
charging request. In order to mitigate the computational burden for large-scale EV
charging, the decentralized charging strategies become more and more popular in
recent years. In the decentralized charging strategy, each participant has the ability to
compute the optimal decision and communicate with other participants. Every partic-
ipant’s decision will be finally stable, and the whole EV charging strategy will be in an
equilibrium state.

In [9], a non-cooperative Stackelberg game is used for the EV charging. In the
game, smart gird is a leader which provides the price at first, and the EVs are followers
who decide their charging strategies according to the price. In [10], a non-cooperative
game is adopted to formulate the parking-lot EV charging problem. In order to solve
the coupled constraint problem, the Rosen-Nash normalized equilibrium is utilized in
the game model. Julian de Hoog et al. [11] took advantages of a market mechanism to
allocate the charging capacity to ensure the network stability. For the purpose of
processing the large population and dynamic EV arrivals, the authors in [12] proposed
a local scheduling scheme, which divides the EVs into different groups and the
charging decision is determined based on the group information. In [13], in order to
minimize the charging cost, Yijia Cao et al. put forward an optimized charging model,
which considered the SOC curve and TOU price. In regarding with the security
problems, Chao-Kai Wen et al. in [14] proposed a distributed charging strategy, which
only requires the EV demand rather than the private information for protecting the
users privacy.

A lot of research work is mainly related with the charging cost, security, price curve
and distributed generation et al. In [15], the authors believed that the congestion
management is an important issue in smart grid. They summarized that the congestion
management is used to manage and control the charging EVs, so as to minimize queue
at the charging station. According to their survey, only two papers are related with they
defined congestion management. The two papers are about finding the minimum
congestion travel routings. Islam Safak Bayram also studied the congestion manage-
ment problem in [16], where they brought forward a control mechanism to avoid
congestion at busy charging station, but the authors did not consider the congestion
probabilities balance among different charging stations.

In this paper, we propose a distributed charging strategy CCCS, which focuses on
balancing the congestion probabilities among different charging stations, and mean-
while the charging costs, traveling distances to the charging station as well as the users’
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satisfactions are all considered. The rest of this paper is organized as follows. Section 2
introduces the system model as well as the charging algorithm of CCCS. In Sect. 3, the
performance of CCCS is evaluated. Conclusions and future work are presented in
Sect. 4.

2 Mathematical Model of CCCS

2.1 Utility Function of Charging Station

Every charging station has the maximum charging power Pmax, which is deter-mined
by the following equation:

Pmax
j ¼ Pmax

k � Pbasic
k ð1Þ

Where Pmax
k the is the maximum allowed power of the electricity bus k, which the

charging station j connects to. The Pbasic
k is the basic load consumed by other entities,

such as buildings, equipment, et al. In this paper, we assume each CS connects to only
one bus node.

Each charging station also has different charging piles in different time slots, which
is defined as follows:

Npile
j ¼ Pmax

j

Pcharging
ð2Þ

Where Pcharging is the charging power of EV, and we assume it is a constant. In order to
express conveniently, we omit the annotations of time slot on every variable.

Because of the finite charging piles in each charging station, we further define a
congestion probability to represent the charging congestion:

C onj ¼
Nj�Npile

j

Nj
; if Nj [Npile

j

0; if Nj �Npile
j

8<
: ð3Þ

Where Nj is the number of EVs that willing to charge at the charging station j. In order
to introduce the proportion of the available charging piles in charging station j, we
define the following indicator:

Avaj ¼
Npile
j �Nj

Npile
j

; if Npile
j [Nj

0; if Npile
j �Nj

8<
: ð4Þ

The utility function of charging station j is defined as:

UðLjÞ ¼ pjLj � aðLjÞ2 � bLj � c ð5Þ
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Where Lj is the charging load of charging station j, and pj is the charging price. Besides
a, b, and c are constants for all the charging stations in this paper. PjLj denotes the

income of charging, and aðLjÞ2 þ bLj þ c denotes the cost for generating Lj electricity
quantity of power grid. Equation (5) can be proved as a convex function.

2.2 Utility Function of Electric Vehicle

Every EV i has a coordinate ðcxi; cyiÞ, destination coordinate ðcxdesi ; cydesi Þ and distance
d j
i to charging station j whose coordinate is ðcxj; cyiÞ � d j

i is:

d j
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcxi � cxjÞ2 þ

q
ðcxi � cxjÞ2 ð6Þ

The convex utility function is defined as:

UðxiÞ ¼ ajðr lnðxxiÞ � pjxi � plastd j
i bþCÞ ð7Þ

Where r, x and b are constants, and b is the constant coefficient of converting the
distance 1 km into the electricity quantity 1 MWh. plast is the charging price of the
latest time slot, and we assume it is a constant for simplicity. pj is the charging price of
this time slot of charging station j, and its initial value is plast C is a big positive
constant for ensuring the value of U (xi) is positive. aj is a probability related factor,
which is defined as follows:

aj ¼ ðmþAvajÞðm� C onjÞ ð8Þ

Where m is a constant. In the actual environment, the electricity charging quantity
of EV is limited to a range ½xmini ; xmaxi �, the boundary values of which are defined as
follows:

xmini ¼ bddesj if bddesj \ð0:8� SOCiÞCapi;
ð0:8� SOCiÞCapi; else

�
ð9Þ

xmaxi ¼ ð0:8� SOCiÞCapi ð10Þ

ddesj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðcxj � cxdesi Þ2 þðcyj � cydesi Þ2

q
ð11Þ

Where SOCi the is the state of charge (SOC) of EV i, which belongs to the interval (0,
1). In order to avoid the overcharge, we set the maximum SOC is 0.8. Capi is the
battery capacity of EV i, which is a constant for all EVs. ddesj is the distance between
charging station j and the destination of the EV i.
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2.3 Optimization Problem

We define the following optimization model for the maximum social utility:

maximize
XM
j¼1

UðLjÞþ
XNj

i¼1

UðxiÞ
 !

s:t: Lj ¼
XNj

i¼1

xi

ð12Þ

Where M is the charging station number. The solution of problem (12) is also the
solution of the follow problem:

maximize UðLjÞþ
XNj

i¼1

UðxiÞ
 !

s:t: Lj ¼
XNj

i¼1

xi

ð13Þ

Problem (13) can be solved by the convex theory, and after using the dual decom-
position to the dual problem of the (13)’s Lagrangian function [17] the sub-optimization
strategies can be obtained for both EV and CS. Based on the strategies of EV and CS, we
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Fig. 1. The flowchart of communication system
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further propose a coordinated charging communication system, shown in Fig. 1. As for
the ending signal, we define the following inequality to represent the ending condition:

convergence ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j¼1

L�j �
PNj

i¼1
x�i

 !2
vuut

PM
j¼1

PNj

i¼1
x�i

\r ð14Þ

Where

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
j¼1

L�j �
PNj

i¼1
x�i

 !2
vuut means the standard deviation between the optimal

charging demands of EVs and charging loads of CSs.
PM
j¼1

PNj

i¼1
x�i means all the optimal

charging demands. r is a very small positive value.

3 Simulation

3.1 Environment Setting

In the simulation, we have developed a platform, which combines the MATPOWER
[18] and the charging module together. We use the MATPOWER to calculate the
power flow for the node voltage verification. The charging module is developed based
on the Java environment.

The basic load is obtained from [19], and we have adjusted the load data in
proportion manner to adapt the simulation scenes. The basic load is divided into several
parts and dispatched to every charging station. The EVs are randomly distributed in a
square area with the side length as 100,000 m. There are 20 charging stations randomly
located in this area. We assume each charging station connects to only one electricity
bus node. The IEEE 30-bus power grid is used for simulation, and its parameter values
are the same as that in [18]. The maximum allowed power of each bus node is defined
as the same values in MATPOWER case30 testing file. The necessary parameters’
values are assigned in Table 1.

3.2 Comparison Strategies

We define three benchmarks: CCS (Congestion based Charging Strategy), DCS
(Distance based Charging Strategy) and COSTCS (COST based Charging Strategy).

In the CCS, the utility function of CS is the same as that of CCCS. But the utility
function of EV is different:

UðxiÞ ¼ aj ð15Þ
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According to (15), the x�i is an arbitrary value, and we fix it as xmini .
In the DCS, the utility function of EV is:

UðxiÞ ¼ �d j
i =1000þC ð16Þ

The value of x�i is also fixed as xmini . In the COSTCS, the utility function of EV is:

UðxiÞ ¼ �pjxi � plastd j
i bþC ð17Þ

Because it is a linear function, the x�i is also fixed as xmini .

3.3 Charging Congestion Probability and Charging Cost

In this sub section, we simulate the four algorithms in one time slot. The parameters
values are shown in Table 1. The charging congestion probability and average charging
cost are simulated, and the results are shown in Fig. 2.

In Fig. 2(a), because the curves of the CCCS and CCS are the most flatten, the
charging congestion probabilities of CSs are almost equal to each other. So, CCCS and
CCS have the best performance in terms of charging congestion probability. Mean-
while, the DCS and COSTCS do not have the ability to balance the charging con-
gestion probability among charging stations. The main reason is that DCS and
COSTCS do not consider the charging congestion probability in their utility functions
of EV.

In Fig. 2(b), the COSTCS has the best performance of the average charging cost,
which is because the COSTCS only considers the charging cost in its utility function.

Table 1. Parameter settings

Parameter name Assigned value Remarks

Area side length 100,000 m –

CS Number (M) 20 –

EV Number 2000 –

Pcharging 0.048 MW Fast charging power (ref [16])

a 0.01 –

b 0.8 –

c 0.5 –

r 2.0 –

x 25.0 –

b 0.0002 1 km consumes 0.0002MWh (ref [1])
m 5.0 –

C 10000 Big enough positive value
Capi 0.024 MWh The same value for EVs (ref [1])

plast 2.0 Initial price for every CS

r 0.002 For ending iteration process
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The CCS has the worst performance in terms of the average charging cost, because it
only considers the charging congestion probability. Both the CCCS and DCS have the
moderate performance as they have partly considered the charging cost in their utility
functions.

3.4 Convergence and Bus Node Voltage

In this sub section, the parameters are the same as that of 4.3. Simulation results are
shown in Fig. 3. The Bus node minimum voltage level is set as 0.95. When the Bus
voltage is simulated, we let all the charging demands from EVs are injected into the
power grid at the same time.

(a) (b)

Fig. 2. The charging congestion probability and average charging cost of different CSs

(a) (b)

Fig. 3. The convergence performance and influences to the power grid voltage
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In the Fig. 3(a), the convergence index is defined in (14). As shown in Fig. 3(a), all
the algorithms are convergent in 30 iterations, which means all the four algorithms are
convergent and each charging station has satisfied the charging demand of EVs.

In the Fig. 3(b), we let all the charging demands are injected into Bus at the same
time. We find that the voltage levels of DCS and COSTCS are very low at some bus
node, which is because the EVs in these charging strategies are not considering the
charging congestion probability, which results into the unbalanced charging power
distribution. The voltage performances of CCCS and CCS are much better than that of
the other two.

According to the voltage level results, we know that the charging congestion
probability is an important factor for the power grid, and it can avoid the unbalanced
charging demand among different charging stations.

4 Conclusion

In this paper, we propose an EV charging strategy CCCS, which considers the charging
congestion probability, charging cost, distance and users’ satisfactions in the utility
function. The charging station utility and EV utility are combined together to formulate
a social welfare maximizing convex problem. Simulation results show that the CCCS
performs well in terms of balancing the charging congestion probabilities among
charging stations and reducing charging costs. Most importantly, this paper presents
that the charging congestion probability is an important factor to balance the charging
demand among different charging stations.

In the future, we will focus on the uncertainly to the EV charging strategy, such as
the distributed resources integration. Besides, the implement of the EV charging
algorithms is also an important issue, where each participant executes distributed
algorithm, and how to make them execute algorithms in synchronous manner is
essential. Besides, there are many other factors should be considered, such as the
transportation conditions, communication data loss etc.

Acknowledgement. This work is partly supported by the National Natural Science Foundation
of China (Grant No. 61303043), and National Planning Office of Philosophy and Social of China
(Grant No. 15CGL018), and Provincial Natural Science Foundation of Hunan (Grant
No. 13JJ4052).

References

1. Mukherjee, J.C., Gupta, A.: A review of charge scheduling of electric vehicles in smart grid.
IEEE Syst. J. 9, 1541–1553 (2015)

2. Wang, R., Wang, P., Xiao, G.: Two-stage mechanism for massive electric vehicle charging
involving renewable energy. IEEE Trans. Veh. Technol. 65, 4159–4171 (2016)

3. Masoum, A.S., Deilami, S., Abu-Siada, A., Masoum, M.A.S.: Fuzzy approach for online
coordination of plug-in electric vehicle charging in smart grid. IEEE Trans. Sustain. Energ.
6, 1112–1121 (2015)

200 Q. Tang et al.



4. Sundström, O., Binding, C.: Flexible charging optimization for electric vehicles considering
distribution grid constraints. IEEE Transactions on Smart Grid 3, 26–37 (2012)

5. Saber, A.Y., Venayagamoorthy, G.K.: Resource scheduling under uncertainty in a smart grid
with renewables and plug-in vehicles. IEEE Syst. J. 6, 103–109 (2012)

6. Khodayar, M.E., Wu, L., Shahidehpour, M.: Hourly coordination of electric vehicle operation
and volatile wind power generation in SCUC. IEEE Trans. Smart Grid 3, 1271–1279 (2012)

7. Sortomme, E., Hindi, M.M., MacPherson, S.D.J., Venkata, S.S.: Coordinated charging of
plug-in hybrid electric vehicles to minimize distribution system losses. IEEE Trans. Smart
Grid 2, 198–205 (2011)

8. Wu, D., Aliprantis, D., Ying, L.: Load scheduling and dispatch for aggregators of plug-in
electric vehicles. IEEE Trans. Smart Grid 3, 368–376 (2012)

9. Tushar, W., Saad, W., Poor, H.V., Smith, D.B.: Economics of electric vehicle charging: a
game theoretic approach. IEEE Trans. Smart Grid 3, 1767–1778 (2012)

10. Zhang, L., Li, Y.: A game-theoretic approach to optimal scheduling of parking- lot electric
vehicle charging. IEEE Trans. Veh. Technol. 65, 4068–4078 (2016)

11. Hoog, J.D., Alpcan, T., Brazil, M., Thomas, D.A., Mareels, I.: A market mechanism for
electric vehicle charging under network constraints. IEEE Trans. Smart Grid 7, 827–836
(2016)

12. He, Y., Venkatesh, B., Guan, L.: Optimal scheduling for charging and discharging of electric
vehicles. IEEE Trans. Smart Grid 3, 1095–1105 (2012)

13. Cao, Y., Tang, S., Li, C., Zhang, P., Tan, Y., Zhang, Z., Li, J.: An optimized EV charging
model considering TOU price and SOC curve. IEEE Trans. Smart Grid 3, 388–393 (2012)

14. Wen, C.-K., Chen, J.-C., Teng, J.-H., Ting, P.: Decentralized plug-in electric vehicle
charging selection algorithm in power systems. IEEE Trans. Smart Grid 3, 1779–1789
(2012)

15. Rigas, E.S., Ramchurn, S.D., Bassiliades, N.: Managing electric vehicles in the s- mart grid
using artificial intelligence: a survey. IEEE Trans. Intell. Transp. Syst. 16, 1619–1635 (2015)

16. Bayram, I.S., Michailidis, G., Devetsikiotis, M.: Unsplittable load balancing in a network of
charging stations under QoS guarantees. IEEE Trans. Smart Grid 6, 1292–1302 (2015)

17. Samadi, P., Mohsenian-Rad, A.-H., Schober, R., Wong, V.W.S., Jatskevich, J.: Optimal
real-time pricing algorithm based on utility maximization for smart grid. In: First IEEE
International Conference on Smart Grid Communications, pp. 415–420. IEEE Press,
New York (2010)

18. Zimmerman, R.D., Murillo-Snchez, C.E., Thomas, R.J.: MATPOWER: steady-state
operations, planning and analysis tools for power systems research and education. IEEE
Trans. Power Syst. 26, 12–19 (2011)

19. Australian Energy Market Operator (AEMO). http://www.aemo.com.au/

Congestion Probability Balanced Electric Vehicle Charging Strategy 201

http://www.aemo.com.au/

	Congestion Probability Balanced Electric Vehicle Charging Strategy in Smart Grid
	Abstract
	1 Introduction
	2 Mathematical Model of CCCS
	2.1 Utility Function of Charging Station
	2.2 Utility Function of Electric Vehicle
	2.3 Optimization Problem

	3 Simulation
	3.1 Environment Setting
	3.2 Comparison Strategies
	3.3 Charging Congestion Probability and Charging Cost
	3.4 Convergence and Bus Node Voltage

	4 Conclusion
	Acknowledgement
	References


