
Low-Disruptive and Timely Dynamic Software
Updating of Smart Grid Components

Martin Alexander Neumann(B), Christoph Tobias Bach, Yong Ding,
Till Riedel, and Michael Beigl

Karlsruhe Institute of Technology,
Vincenz-Priessnitz-Str. 1, 76131 Karlsruhe, Germany

{martin.neumann,christoph.bach,
yong.ding,till.riedel,michael.beigl}@kit.edu

Abstract. Components in the power grid require security, high avail-
ability and real-time communications for reliable operation. But these
components are based on software that contains issues that need to be
fixed. Timely installation of software updates allows securing vulnerable
software quickly but conventionally disrupts availability and communi-
cations. Rolling updates on redundant systems prevent such disruptions
but delay update installations as they need to be prepared carefully to
update reliably. Dynamic Software Updating shortens the installation
duration of updates by implementing them in-memory, allowing timely
hot-fixing and installation of new features without service disruption or
degradation in soft real-time communications. As the Smart Grid set-
tles on standardization and common technologies for interoperability,
the need for timely hot-fixing and updating of software applications and
libraries which are in widespread use increases.

In this paper, we discuss requirements of Smart Grid components
and their updating opportunities. Afterwards, we present Lusagent, our
dynamic updating system for Java 6 to 8 that is based on a novel eager
program state transformation approach. We illustrate its programming
efforts in a case study on an open-source Java control system frame-
work and on several other server applications. Furthermore, we present
performance measurements of dynamically updating these applications.
The results demonstrate the potential of our dynamic updating approach
in enabling low-disruptive and timely updating of highly available and
widespread components at low and only one-time programming efforts.

1 Introduction

The power grid is becoming more connected and intelligent, forming the
infrastructure of the Smart Grid. It allows highly frequent measurements at
power producers, consumers and in power transmission for real-time monitoring
and control. The system can immediately respond to volatile changes in genera-
tion and demand, and diagnose faults at high resolution to prevent surges. The
goal is to maximize the utilization of the power infrastructure and yet improve

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

E.T. Lau et al. (Eds.): SmartGIFT 2017, LNICST 203, pp. 155–171, 2017.

DOI: 10.1007/978-3-319-61813-5 16

156 M.A. Neumann et al.

its reliability. This requires all grid components to be highly available and inter-
connected by real-time communications. Heterogeneous devices, ranging from
micro-controllers to cloud servers, and heterogeneous communications, ranging
from small-bandwidth unreliable wireless links to high-bandwidth robust cable
links are interconnected by standardization and are redundant if applicable.

With the grid becoming more intelligent, the relevance of software in its com-
ponents increases. As any other software, the software in the grid infrastructure
needs to be updated in the field, either to fix bugs and security features, or to add
new features and improve the reliability. These updates must be low-disruptive
and carefully implemented to not affect the systems’ availability and real-time
communications. Besides this closed new infrastructure, the grid components are
opened up to the Internet forming an open general-purpose platform for services
on the Smart Grid. This raises the need to perform updates timely to fix bugs
and security issues, especially security-critical vulnerabilities.

We discuss Dynamic Software Updating (DSU) as an approach for updating
components in the Smart Grid. The goal of DSU is to produce results equivalent
to conventional updating but performing updates at runtime in the application’s
memory to speed up their installation. It uniquely features timely and at the
same time low-disruptive updating of highly available applications. Updates can
be performed at any time, even at saturated load. System providers and opera-
tors are able to immediately push security fixes or new features into the systems
without having to wait for low computing load, scheduled maintenance windows
or wait for the setup of carefully designed rolling updates or big flips [2].

Timely updating is vital to open systems and large systems incorporating
many components with similar software stacks to make it as a whole practi-
cally secure against the exploitation of vulnerabilities. Scheduled maintenance
for performing conventional updates (i.e. fast reboots) allows straightforward
update installation but disrupts the system, which is hardly an option for the
components of the Smart Grid. In contrast, big flips or rolling updates allow non-
disruptive installation of updates to redundant systems behind load balancers.

But big flips and rolling updates have to be designed carefully to prevent
crashing the system during the stretched update period in which old and new
program version are running simultaneously—leading to delayed update instal-
lations [1]. In addition, with these approaches, the software update must be
backwards-compatible to allow both program versions to run concurrently dur-
ing the update schedule [2]. DSU provides a simpler update installation proce-
dure as it does not require such general backwards-compatibility or comparably
complex update scheduling when installing updates to multiple machines.

In the following, we firstly discuss software updating in the Smart Grid and
related work about Dynamic Software Updating in Sects. 2 and 3. Afterwards in
Sect. 4, we present our DSU system for Java 6 to 8, called Lusagent. Section 5
discusses programming efforts of our approach in a case study on a highly avail-
able Java component of an open-source Supervisory Control and Data Acquisi-
tion (SCADA) system. Finally in Sect. 6, we evaluate programming efforts for

Dynamic Software Updating of Smart Grid Components 157

enabling low-disruptive and timely dynamic updates in general, and we assess
updating performance on industry-grade Java virtual machines (JVM).

2 Updating Smart Grid Components

Complex SCADA systems for real-time data acquisition, monitoring and control
are at the core of Smart Grid infrastructure. As depicted in Fig. 1, nodes at pro-
ducers, consumers and in the transmission grid connect grid components to each
other and to data centers. For example, the nodes implement phasor networks,
consisting of PMUs (Phasor Measurement Units) and PDCs (Phasor Data Con-
centrators) that acquire fine-granular grid state at high frequency. Furthermore,
RTUs (Remote Terminal Units) integrate decentralized energy sources into mon-
itoring and control. And, IEDs (Intelligent Electronic Devices) integrate various
grid components, such as voltage regulators and circuit breakers. Besides this,
the system incorporates highly available generic computing infrastructure, such
as databases or message queues and brokers in its nodes and data centers.

Software on these nodes, message queues/brokers, databases and central con-
trollers require updating to fix bugs and to provide new features. Bugs must be
fixed quickly to ensure reliability of the grid; security issues need quick care if
the components are not entirely sealed in a closed environment; and new fea-
tures might be interesting to deploy quickly for business or regulatory reasons.
Especially, security patches to widespread components, such as cryptographic
libraries, are particularly important to deploy quickly, as large parts of a system
become vulnerable to the same issue when a vulnerability is disclosed. With
the power grid opening up and fostering standardization, the need for timely
installation of bug and security patches and other updates increases.

But quick deployment is challenged by high availability requirements, leading
to delayed installation and periods of vulnerability. Even if installation is only
delayed on a fraction of deployed systems, this may sum up to a large number
of vulnerable systems. For example, in case of the heartbleed bug, a duration of
2 weeks has been estimated for its fix to reach 50% of the vulnerable web servers
in the public IPv4 space which amounted to 5% of all IPv4 web servers [5].

Updating software on Smart Grid components may either induce downtime
at non-redundantly designed systems or maybe enabled hot by rolling updates or
application-specific solutions. Rolling updates build on the idea of reliable com-
puting of switching to a hot standby at runtime: such updates low-disruptively
switch to a separate instance of the new program version whose state has
already been warmed-up. But in contrast to DSU, real-time communications
may be challenged by re-establishing (or re-routing) connections to the warmed-
up instance. Furthermore, rolling updates require backwards-compatibility of
any updates to the application and careful distributed update scheduling. This
is also the reason why this scheme is generally found complex to get right [4].

Alternatively, application-specific approaches to live update the parts of an
application that make a conventional update take time could be adapted to speed
up updating. For example, Facebook’s version of memcached is a prominent

158 M.A. Neumann et al.

Fig. 1. Power and Computing Components in the Smart Grid (http://www.abb.com/
cawp/seitp202/77a7e74be1ea8904c12577050030ab14.aspx)

example that migrates the cache content hot between program versions, effec-
tively hot-swapping the program around cache [12]. Such schemes head towards
generic DSU systems by using dynamic updating techniques to perform time-
intensive parts of vanilla updates in-memory.

3 Dynamic Software Updating

Systems for Dynamic Software Updates (DSU) may be used by developers when
designing new software or to retrofit off-the-shelf applications. They go a step fur-
ther than application-specific updating approaches by providing generic updat-
ing services to an application to update parts of it in-memory [10]. Such DSU
systems usually stop the control-flow in program parts affected by an update,
transform control-flow and state to the new version and afterwards release the
control-flow in the new version. Systems try to provide safety properties such
that performed transformations at the point where the control-flow has been
stopped—forms of type safety such that no transformations or new program
code is able to interact with any unknown/old data structures are usual [16].

DSU systems should require minimal to no programmer intervention to
reduce the cost for replacing conventional updates by dynamic ones. For example,
no intervention is demonstrated by the DCE VM [18] that aids in Java debug-
ging by applying small changes dynamically. Beyond that, release-level DSU

http://www.abb.com/cawp/seitp202/77a7e74be1ea8904c12577050030ab14.aspx
http://www.abb.com/cawp/seitp202/77a7e74be1ea8904c12577050030ab14.aspx

Dynamic Software Updating of Smart Grid Components 159

offers tested and efficient generic updating features that aim for high update
flexibility in allowing performing any update to any part of a running program.
For example, as implemented by JVolve [17], Javelus [8] or Rubah [13] for Java.
DSU may complement application-specific updating approaches or be used as a
standalone feature for new applications or be retrofitted into off-the-shelf appli-
cations. The high flexibility aimed for in the provided generic DSU mechanisms
may be less efficient than tuned application-specific solutions (e.g. Facebook’s
version of memcached), but DSU mechanisms complement such solutions by
offering to update even those parts the application-specific ones cannot update.

Besides such flexibility, DSU systems try to be timely in performing updates
right away when updates are released. But entire-program DSU systems offering
such flexible and timely updates usually require programming: timely updating
requires an application to be instrumented to reach a safe point for updating
quickly when an update is available [9], and flexible updating requires update
code that implements the necessary transformations in-memory. But when con-
sidering that such instrumentations and update codes have to be developed for
widespread components, as in the context of the Smart Grid, we think, that the
benefits outweigh the necessary efforts: all installations could update immedi-
ately without additional preparation efforts of the individual installations.

4 Lusagent System

DSU systems perform an atomic swap of an old into a new program in a stop-
the-world pause. The transformation of program state is either implemented
and finalized eagerly (during the stop) or lazily (after the stop—while the new
program is already running, but before the program is accessing the state).

We present an efficient eager dynamic updating approach for Java. It is based
on a novel parallel linear scan of the JVM heap. As previous eager approaches
presented in [13,14,17,18], the entire program state is updated in a stop-the-
world pause such that no transformation work is left after update which may
affect the application performance. In contrast to previous approaches, the heap
is sequentially iterated in-between Garbage Collections (GC) instead of travers-
ing its object graph in GC-style. The approach is implemented in our DSU
system Lusagent1. It is a native plugin to stock Oracle and OpenJDK JVMs for
Java 6 to 8 that causes no steady-state overhead by design.

Vanilla applications need an explicit programmer-provided instrumentation
with update points [11,13] for enabling dynamic updates but are not modified any
further. Update code to transform programs during DSUs can be programmed in
our Domain-Specific Language (DSL) for Object Transformers (OT).

1 Code of Lusagent and evaluated applications: https://github.com/lusagent

https://github.com/lusagent

160 M.A. Neumann et al.

4.1 Parts of Lusagent

– Static analyses of old and new program
(1) determine mappings and categorizations for classes and fields (Sects. 4.2)
(2) determine efficient auto-transformations (Sects. 4.3 and 4.5)
(3) build type universe for type-safe OT programming/execution (Sect. 4.4)

– Programming environment for object transformers (Sects. 4.6 and 4.7)
– Updating runtime (Sect. 4.8).

4.2 Class Mapping

Classes in the new program, i.e. in namespace V1 = {t11 . . . t1m}, are firstly mapped
to classes in the old program, i.e. in namespace V0 = {t01 . . . t0n}. Lusagent by
default does so by their name: equally-named classes are mapped. The program-
mer may add custom mappings to change the defaults or add renamed classes.
Let these mapped classes be defined by a relation Mt := (V0 ×V1)∪ (V1 ×V0).
Furthermore, classes in external and standard libraries form namespace CF

(called foreign classes). Let our type universe be closed and consist of V0, V1

and CF , such that T = V0 ∪V1 ∪CF holds. Mt is not allowed to define mappings
on CF .

Fields in old classes are mapped to fields in new classes. Lusagent by default
does so by their name and type: equally-named fields are mapped if their types
are mapped by Mt. The programmer may add custom mappings to change the
defaults or add renamed fields to a class mapping. Definition of mapped fields
(Mf): let F be the set of all fields; let π(f) be the name of field f ; let τ(f) be the
type of field f ; let τdef (f) be the defining type of field f ; let ε : T → FP ε(t) :=
{f ∈ F |τdef (f) = t}; let x � y :⇔ x instanceof y; let ξ : T → FP ξ(t) :=⋃

s∈T,t�s ε(s); let x, y ∈ F ; (x, y) ∈ Mf :⇔ π(x) = π(y) ∧ (τ(x), τ(y)) ∈ Mt ∧
(τdef(x), τdef(y)) ∈ Mt. A mapping between two classes is defined as successful if
all fields are mapped between them. Definition of successful type mappings
(Mst ⊂ Mt): let (s, t) ∈ Mt; (s, t) ∈ Mst :⇔ ∀ x ∈ ξ(s)∃y ∈ ξ(t) : (x, y) ∈ Mf .

4.3 Class Categorization and Auto-transformation

Afterwards, any classes loaded into the JVM, i.e. in our type universe T , are
categorized as follows. Definition of foreign types (CF ⊂ T): CF := T\(V0 ∪
V1). Definition of deleted types (CD ⊂ V0): let x ∈ V0; x ∈ CD :⇔ ∀ y ∈
T : (x, y) �∈ Mt. Definition of unmodified types (CU ⊂ V0): let x ∈ V0;
x ∈ CU :⇔ ∃y ∈ T : (x, y) ∈ Mst ∧ (y, x) ∈ Mst. Definition of modified types
(CM): CM := V0\(CU ∪ CD). Classes in CF and CD and their objects are not
transformed as they are not part of the old program or will not be part of the
new program. Classes in CU and CM and their objects will be transformed.

Objects of classes in CU can be directly used in the new program as their
memory layout does not change. Lusagent copies classes in CU into the new
namespace, but their objects are transformed in-place by patching their class-
pointers. Classes in CM have changed memory layouts which requires to copy
their field values. Lusagent copies classes in CM and their objects out-of-place.

Dynamic Software Updating of Smart Grid Components 161

The layout of objects may be directly or indirectly affected by modified object
fields: the modification of object fields is inherited in stock JVMs as the memory
layout of an object contains all values of its own fields but also of all object
fields of its superclasses. Figure 2 shows an example type hierarchy. It contains
the generic superclass java.lang.Object, the subclasses A (abstract), C1, C2 and
C3, and the interfaces I1, I2 and I3. Given modified class fields of A: this affects
A only, no other classes would be affected. Given modified object fields of A, the
objects of C1, C2 and C3 would all be affected by this modification too.

Fig. 2. Example on classes with modified object fields

4.4 Type Universe for Object Transformers

We use a type universe such that programmers can safely (1) access deleted
fields in old objects, (2) access old objects of deleted classes, and (3) access new
objects which are incompatible to the new fields they are stored in. We leave
V1 as is such that the programmer can safely interact with the new program
but we modify V0 as follows to provide type-safe access in any cases of (1), (2)
and (3).

Definition of foreign-typed fields (Ff ⊂ F): let τ(f) be the type of field
f ; let ε : T → FP ε(t) := {f ∈ F |τdef (f) = t}; let x � y :⇔ x instanceof y;
Ff := {f ∈ ⋃

x∈V0
ε(x)|τ(f) ∈ CF }. Foreign-typed fields in V0 are not rewritten

and always provide type-safe access to old and new objects (assumes that types of
new objects are never narrowed by a foreign type which is currently a limitation
of our system). Definition of V0-typed fields (F0 ⊂ F): let st(t) be the set
of all subtypes of type t including t; F0 := {f ∈ ⋃

x∈V0
ε(x)|τ(f) ∈ V0 ∧ ∀t ∈

sty(τ(f)) : t ∈ CD}. Fields in V0 are V0-typed fields and therefore not rewritten
if the field can only refer to old objects. Definition of V1-typed fields (F1 ⊂ F):
F1 := {f ∈ ⋃

x∈V0
ε(x)|τ(f) ∈ V0 ∧ ∀t ∈ Mt(τ(f)) : t ∈ sty(τ(Mf (f)))}. Field f

in V0 is V1-typed and therefore rewritten to its mapped new type τ(Mf (f)) if f
can only refer to new objects that are compatible to the new type of the field.
Definition of unknown-typed fields (FU ⊂ F) FU := {f ∈ ⋃

x∈V0
ε(x)|τ(f) ∈

V0∧((∃t ∈ Mt(sty(τ(f))) : t �∈ sty(τ(Mf (f))))∨((∃t ∈ sty(τ(f)) : t ∈ CD)∧(∃t ∈
Mc(sty(τ(f))) : t ∈ sty(τ(Mf (f))))))}. Field f in V0 is unknown-typed and

162 M.A. Neumann et al.

therefore rewritten to java.lang.Object if f can refer to old and new objects,
or if f can refer to new objects that are incompatible to its mapped new type
τ(Mf (f)). These rewrites allow programmers to access all objects which are
incompatible to the typing of the new program safely via fields of old objects.

4.5 Skippable Fields During Heap Iteration

Our heap iteration copies changed objects out-of-place and fixes up any refer-
ences to these objects. This requires to iterate all fields in all objects and patch
values if affected references are found. To minimize costly memory operations
when iterating fields, Lusagent uses a novel technique to statically determine
which object fields cannot refer to objects copied during an update such that
the runtime can safely skip these fields during heap iteration. In Fig. 2, given
modified object fields of C2, also C3 is a class with modified object fields. In this
case, firstly all fields typed C2 or C3 have to be visited. Secondly, all fields typed
I1, I2, I3, A and Object have to be visited too as these are all supertypes of the
classes C2 and C3. But in this situation all fields typed C1 may safely be skipped
as they cannot refer to an object of a class with modified object fields.

Lusagent’s linear heap scan ensures that all objects on the heap are still
reached. In contrast, when performing a heap traversal (from the heap roots),
no object fields could be skipped, as parts of the heap would become unreachable.

4.6 Programming Model

The programmer can implement OTs, i.e. Java-like code snippets registered on
classes in V1. The OT is called once per object of that class: it provides local vari-
ables o0 and o1 to access transformed old and new objects. The OT programmer
in general interacts with the new program version only and reads fields of the old
version to rescue values. The type universe T is defined as outlined in Sect. 4.4,
i.e. types in V1 are unmodified and types in V0 have been rewritten for type-safe
access. To integrate the classes in V0 and V1 into one Java namespace, their
names are prefixed by pseudo packages v0 and v1. New fields contain the value
that has been transformed into it, except they contain the value null if they
refer to old or incompatible new objects after transformation. Old fields contain
old values if they are still V0-typed and they contain new values if they are V1-
typed. They can contain old or new values if they are foreign- or unknown-typed
(java.lang.Object). To prevent additional side-effects between the old and new
program, fields of old classes/objects are read-only and old methods are erased.

4.7 Programming Framework

The programmer has to take care of two tasks using the Lusagent IDE as depicted
in Fig. 3: firstly, instrument a vanilla application with control-flow transformation
code, and secondly, implement OTs on every update to the application.

Control-Flow Instrumentation. The control-flow API has been adopted from
Rubah [13]: by replacing the application threads by specific Lusagent threads

Dynamic Software Updating of Smart Grid Components 163

Fig. 3. Lusagent DSU development workflow

and instrumenting the application with update points that unwind the stack
before update and rebuild it after update, this approach offers to update any
code of an application, especially long-running methods. Furthermore, it can be
used by the programmer to ensure timely initiation of an update: update points
have to be inserted such that all threads visit any of them frequently. Our API
can be used to make sleeps, networking and file I/O interruptable by an update.

Object Transformers. To apply a conventional update dynamically, the program-
mer uses Lusagent’s IDE to specify OTs for it in LusXF. LusXF is a Java-like
language featuring static type-inference and type-checking based on the Xbase
[6] language and the Xtext infrastructure. LusXF provides class and object trans-
formations as first-class citizens, allows to specify their execution sequence and
implements our programming model. Its implementation covers an Eclipse-based
IDE and a standalone compiler which also features validation of OT-specific
semantics. Mappings and auto-transformations can be inspected and stubs for
OTs of modified and new classes can be generated by Lusagent.

4.8 Updating Runtime

Updating with Lusagent works as follows. The DSU-instrumented application
is launched on the JVM using the Lusagent runtime. The runtime replaces the
JVM’s default classloader by a Lusagent one that manages all updatable classes.
When an update is performed, a new program version is loaded using a new
Lusagent classloader and afterwards control-flow and state is transformed.

As depicted in Fig. 4a, the transformation consists of analysis components to
prepare the heap iteration, the heap iteration with automated transformations
itself (phase #1), and the subsequent execution of OTs (phase #2). The analyses
are independent of platform specifics (neither JVM nor operating system). While
phase #2 depends on JNI only, phase #1 operates directly on the internal JVM
data-structures (i.e. class, object and heap layouts) to iterate the entire heap
efficiently. This part is kept portable using Oracle’s Serviceability Agent (SA)
interface [15] which holds symbol locations and definitions of data structures in
the JVM itself which is usually used by debugging and profiling tools.

The workflow of these components is depicted in Fig. 4b. Given the class-
files of V0 and V1, the static analyses are performed while V0 is still running.

164 M.A. Neumann et al.

(a) (b)

Fig. 4. (a) Lusagent runtime architecture Lusagent eager DSU procedure (b) Lusagent
eager DSU procedure

Afterwards, the JVM is stopped, it is validated that no new classes have been
loaded since the static analyses have been finished (which would invalidate the
analysis results) and the heap iteration is initiated. The heap is partitioned into n
equally-sized chunks, each chunk being iterated by an individual thread. Finally,
in phase #2, all OTs for the update are executed: to enable this, Lusagent col-
lects all objects OTs have been registered for during phase #1.

5 Case Study: Dynamically Updating Tango Controls

Among other frameworks, Eclipse NeoSCADA and Tango Controls [7] are two
actively maintained open-source SCADA frameworks that are at least partially
implemented in Java. Eclipse NeoSCADA is based on isolated Java modules
using dedicated classloaders which is currently not supported by Lusagent.
Instead, we have used Lusagent to add dynamic updating to the JTango2 library
of Tango Controls. Tango Controls’ basic architecture consists of sensors and
actuators being connected to a central monitoring and control server. Sensors
and actuators are entirely proxied by device servers. While the central server is
exclusively implemented in C++, device servers can either be implemented in
C++, Python or Java. JTango is used to implement device servers in Java.

We illustrate the programming efforts necessary to enable dynamic updating
of the JTango library in device servers. So far, device servers had to be restarted
to update them. As device servers usually do not keep large data structures
in main memory, restarts are be possible within a few seconds. They are not
instant though, as the Java runtime environment and the JTango boot-up takes
several seconds which we have measured on commodity desktop hardware. This
procedure is speed up by Lusagent resulting in considerably less disruption: we

2 https://github.com/tango-controls/JTango

https://github.com/tango-controls/JTango

Dynamic Software Updating of Smart Grid Components 165

have measured only few milliseconds to update device servers which have been
continuously reporting sensor values at about 20 Hz to a central server.

5.1 Control-Flow Instrumentation

JTango does not use any own application threads but is exclusively driven by
events from the JacORB CORBA [3] library that interconnects it to the Tango
Controls server. We have instrumented the request processing threads in recent
JacORB releases with Lusagent: v3.6, v3.7 (both released in 2015) and v3.8
(released in 2016). These releases are also used by recent JTango releases.

We have a single patch for the three JacORB releases. It is depicted in
simplified form in Listing 1: to allow each request processor to reach an update
point, its standard Java thread has been replaced by a Lusagent thread and an
update point has been added into the thread’s event-loop. Now, JTango can be
updated in-between processing of any two JacORB events. As JTango is not
performing long-running operations when processing JacORB events, no code
has been added into JTango to interrupt operations and reach update points.
JTango itself has not been instrumented: its vanilla releases can be used directly.

5.2 Object Transformers

We have looked at the update code necessary to update 5 subsequent recent
minor releases of JTango dynamically: from v9.0.8 to v9.0.11 and v9.1.0 (all
released in 2016). Table 1 lists the Lines of Code (LoC) changed between
subsequent vanilla releases and lists the LoC of Lusagent OTs we pro-
grammed to implement the subsequent releases as dynamic updates. The updates
v9.0.9 → v9.0.10 and v9.0.10 → v9.0.11 are fully covered by Lusagent’s auto-
matic transformations. The update v9.0.8 → v9.0.9 requires an OT for objects
of 2 classes in which a renamed object field and a class field that has become
and object field are initialized by copying over the values of their old counter-
parts. The update v9.0.11 → v9.1.0 requires an OT for objects of 3 classes in
which newly added object fields are initialized analogously to the new object
constructors.

166 M.A. Neumann et al.

Table 1. Programming efforts with Lusagent for updating JTango

Release Instrumentation Vanilla update OTs

Version LoC +/– LoC +/– LoC LoC

JTango

9.0.8 16514 0, 0 10681 12

9.0.9 16532 Same 12899 0

9.0.10 16558 Same 2926 0

9.0.11 16563 Same 166102 18

9.1.0 16628 Same

6 Evaluation

Besides the previous case study, we have evaluated the programming efforts with
Lusagent and its updating performance on 7 Java server applications: 2 SQL
databases (H2 and HSQLDB), the Voldemort key-value-store, CrossFTP, the
Moquette MQTT broker, JavaEmailServer and the Glowstone game-server. We
measure pauses for updating instances of H2, HSQLDB and Voldemort with
in-memory data-stores which have been warmed-up to at least 4 GiB and while
benchmarks on them are executed. The pauses of Lusagent consist of synchro-
nizing all control-flows in the DSU runtime and the subsequent heap iteration.
For baselining our performance studies, we measure durations of updates with
the Rubah [13] DSU system on H2 and Voldemort using equivalent control-flow
instrumentations. Furthermore, we measure durations of Garbage Collections
(parallel full GC in standard configuration). To illustrate control-flow migration
performance with many threads, CrossFTP is stressed by many clients.

6.1 Programming Efforts

Table 2 shows the Lines of Code (LoC) to instrument the applications with
Lusagent, the LoC affected by the vanilla updates and the LoC required to
implement these vanilla updates by OTs in LusXF. Our experiences confirm
that the control-flow instrumentation proposed by Rubah is manageable and a
one-time effort. We have extended the instrumentation API by a programming
pattern we call update barriers: dynamically generated proxies to synchronize
external threads with the DSU that cannot be replaced by our LusThreads.
This resulted in concise instrumentation solutions for Moquette and HSQLDB.

The first update to Moquette and the last update to HSQLDB are quite
complex: the OTs contain many instanceof tests to determine the situation in
the program state at time-of-update and follow various old fields to access proper
values for transformation. Our type-checked language demonstrates its feasibility
particularly on these updates as the code is concise and its typing apparent.

Dynamic Software Updating of Smart Grid Components 167

Table 2. Programming efforts with Lusagent

Release Instr. Van. update OTs Release Instr. V. update OTs

Version LoC +/– LoC +/– LoC LoC Ver LoC +/– LoC +/– LoC LoC

H2 Moquette

1.2.121 78738 331, 38 0.7 8468 19, 3

1.2.122 79185 Same 1184, 610 21 0.8 9691 102, 8 3109, 2629 267

1.2.123 79274 333, 34 2188, 1911 12 0.8.1 9670 11, 1 170, 307 33

HSQLDB CrossFTP

2.3.0 168130 196, 147 1.07 18082 408, 247

2.3.1 168212 196, 139 285, 195 4 1.08 18109 Same 97, 46 0

2.3.2 168563 Same 2666, 1871 34 1.09 18174 420, 233 718, 702 33

2.3.3 167638 Same 10526, 11970 201 1.11 18468 Same 615, 189 28

Voldemort JavaEmailServer

1.5.3 58474 69, 13 1.3.3 2429 262, 85

1.5.4 58497 Same 82, 24 6 1.3.4 2508 Same 137, 17 0

Glowstone 1.4 2590 Same 134, 7 11

1.8.4 45781 41, 10

6.2 Pauses for Updating

We have measured the pauses for updating with Rubah and Lusagent on H2,
HSQLDB, Voldemort and CrossFTP. The results are listed in Table 3. Both,
Lusagent with and without its field skipping technique, outperform parallel
full Garbage Collection (GC). On average, the skipping technique improves

Table 3. Pauses (in secs) for updating large memory applications with Rubah and
Lusagent. (avg. & std. dev. from 15 samples.)

Update Mem scale Lusagent no skip Lusagent with skip GC Eager Rubah Lazy Rubah

μ ± σ μ ± σ μ ± σ μ ± σ μ ± σ

H2

121 → 122 64a 3.6 ± 0.04 3.6 ± 0.21 4.6 ± 0.05 21.9 ± 3.89 0.6 ± 0.09

122 → 123 64 3.7 ± 0.06 3.6 ± 0.05 4.6 ± 0.04 25.0 ± 0.50 0.7 ± 0.15

HSQLDB

2.3.0 → 1 200a 1.5 ± 0.01 1.3 ± 0.01 5.0 ± 0.16 –b –b

2.3.1 → 2 200 1.5 ± 0.01 1.3 ± 0.01 5.0 ± 0.23 – –

2.3.2 → 3 200 1.8 ± 0.02 1.7 ± 0.02 5.2 ± 0.18 – –

Voldemort

v1.5.3 → 4 M5a 1.0 ± 0.03 0.9 ± 0.02 4.1 ± 0.03 24.6 ± 1.47 0.3 ± 0.03

M10 1.9 ± 0.02 1.7 ± 0.02 7.9 ± 0.08 80.6 ± 5.52 0.4 ± 0.04

M15 2.8 ± 0.04 2.5 ± 0.03 14.4 ± 0.48 204.4 ± 12.08 0.4 ± 0.06
a64 is a scale factor for the Dacapo TPC-C benchmark; 200 is a scale factor for the HSQLDB TPC-B

benchmark; M5 is a scale factor for the Voldemort benchmark. All three factors result in processes of >4

GiB unshared memory given by Unique Set Size (USS) on Linux for x64.
bWe have not yet ported our Object Transformers for HSQLDB to Rubah.

168 M.A. Neumann et al.

performance by 9.2%. The performance improvements differ significantly between
the databases: 1.4% for H2, 11.4% for Voldemort, 15.4% for HSQLDB.

We expect the type hierarchy in the software to be a relevant factor for
the performance differences. But as the update pause is dominated by the
copying overhead for out-of-place object transformations after heap iteration,
this performance improvement during heap iteration becomes less evident with
larger updates. We preliminary conclude that our field skipping improves lin-
ear heap scanning performance significantly (depending on the type hierarchy)
and improves updates significantly that affect only a moderate fraction of heap
objects (Fig. 5).

(a) (b)

Fig. 5. (a) Update pauses compared to GC. (avg. & std. dev. from 15 samples) (b)
Benchmark performance on update. Vanilla application is baseline.

Table 4. Pauses (in secs) for updating many threads with Rubah and Lusagent. (avg.
& std. dev. from 30 samples)

Update Threads Eager Rubah Lusagent

μ ± σ μ ± σ

CrossFTP

v1.07 → v1.08 64 0.27 ± 0.03 0.18 ± 0.00

128 0.32 ± 0.05 0.30 ± 0.00

192 0.38 ± 0.06 0.35 ± 0.00

256 0.45 ± 0.04 0.43 ± 0.01

v1.08 → v1.09 128 0.27 ± 0.05 0.30 ± 0.00

256 0.45 ± 0.04 0.43 ± 0.01

v1.09 → v1.11 128 0.27 ± 0.04 0.28 ± 0.00

256 0.46 ± 0.08 0.42 ± 0.01

Dynamic Software Updating of Smart Grid Components 169

Figure 4a also displays the pause durations of the DSUs on H2 and Volde-
mort for Lusagent and Rubah (parallel eager and lazy). The three Voldemort
benchmarks demonstrate that pause times of GC, Lusagent and eager Rubah
scale proportionally to memory size. In contrast, lazy Rubah causes a constant
pause. Pauses induced by lazy Rubah and Lusagent both outperform full GC.

Table 4 depicts the pauses induced by Rubah and Lusagent on CrossFTP. In
this benchmark, memory of the application is only in the range of a several MiB
but the DSU instrumentation has to wait for one thread per connected ftp client
before updating. Both systems cause similar pauses of <1s which scale by the
number of threads. Lusagent exposes a significantly lower variance.

Finally, except for the warmup of the JVM’s Just-In-Time Compiler (JIT),
Lusagent does not induce short-term overhead after updating, as exemplary
depicted in Fig. 4b for the Voldemort benchmark at scale M15.

7 Conclusion

In this work, we have discussed the need for low-disruptive and timely hot-fixing
and updating of software components in the Smart Grid infrastructure which is
becoming an open system and will be largely standardized for interoperability.
Dynamic Software Updating is an approach that tries to enable such updates for
highly available software in general. As Smart Grid components are primarily
based on software, DSU allows to immediately update them whenever security
issues are disclosed that would otherwise put all installations in the system at
risk. This particularly becomes an issue if many openly accessible components
share the same implementations, e.g. a secure communications library in a dis-
tributed system such as the Advanced Metering Infrastructure.

We have presented Lusagent: a system for eager dynamic software updating
of Java applications on release-level which has been implemented as a native plu-
gin to industry-grade JVMs. It uses a novel heap iteration algorithm to efficiently
update an entire Java application in-memory. It allows to perform hot-fixes,
requiring almost no additional programming effort, and it features release-level
updates, which can be flexibly programmed using object transformation code.

We have illustrated our updating approach in the context of the Smart Grid
in a case study performing 5 subsequent release-level updates on JTango device
servers in the Tango Controls SCADA framework. The programming efforts were
considerably low: only an event-driven communications library of JTango had to
be instrumented to enable dynamic updating of JTango and its device servers.

We have furthermore demonstrated the feasibility of our updating approach
by performing 13 release-level DSUs, ranging from small to quite large ones,
on 7 server applications. Furthermore, we studied its efficiency in updating 3
database servers with large transient memory and 1 highly multi-threaded file
server, showing that update pauses are significantly shorter than the parallel full
garbage collections which usually are part of the normal application runtime.

170 M.A. Neumann et al.

References

1. Ajmani, S., Liskov, B., Shrira, L.: Modular software upgrades for distributed sys-
tems. In: Thomas, D. (ed.) ECOOP 2006. LNCS, vol. 4067, pp. 452–476. Springer,
Heidelberg (2006). doi:10.1007/11785477 26

2. Brewer, E.A.: Lessons from giant-scale services. IEEE Internet Comput. 5(4), 46–
55 (2001)

3. Brose, G.: JacORB: Implementation and Design of a Java ORB, pp. 143–154.
Chapman & Hall, Cottbus (1997)

4. Dumitraş, T., Narasimhan, P.: Why do upgrades fail and what can we do about
it? In: Bacon, J.M., Cooper, B.F. (eds.) Middleware 2009. LNCS, vol. 5896, pp.
349–372. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10445-9 18

5. Durumeric, Z., Kasten, J., Adrian, D., Halderman, J.A., Bailey, M., Li, F., Weaver,
N., Amann, J., Beekman, J., Payer, M., Paxson, V.: The matter of heartbleed. In:
Proceedings of the 2014 Conference on Internet Measurement Conference (IMC
2014), pp. 475–488. ACM, New York (2014)

6. Efftinge, S., Eysholdt, M., Köhnlein, J., Zarnekow, S., von Massow, R.,
Hasselbring, W., Hanus, M.: Xbase: implementing domain-specific languages for
Java. In: Proceedings of the 11th International Conference on Generative Pro-
gramming and Component Engineering (GPCE 2012). ACM, New York (2012)

7. Götz, A., Taurel, E., et al.: TANGO V8-Another turbo charged major release. In:
Proceedings of ICALEPCS, San Francisco (2013)

8. Gu, T., Cao, C., Xu, C., Ma, X., Zhang, L., Lu, J.: Javelus: a low disruptive
approach to dynamic software updates. In: Proceedings of the 2012 19th Asia-
Pacific Software Engineering Conference (APSEC 2012), vol. 01, pp. 527–536. IEEE
Computer Society, Washington, DC (2012)

9. Hayden, C.M., Smith, E.K., Hardisty, E.A., Hicks, M., Foster, J.S.: Evaluating
dynamic software update safety using systematic testing. IEEE Trans. Softw. Eng.
38(6), 1340–1354 (2012)

10. Hicks, M., Nettles, S.: Dynamic software updating. ACM Trans. Program. Lang.
Syst. 27(6), 1049–1096 (2005)

11. Neamtiu, I., Hicks, M., Stoyle, G., Oriol, M.: Practical dynamic software updating
for C. In: Proceedings of the 27th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2006), pp. 72–83. ACM, New York
(2006)

12. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy,
R., Paleczny, M., Peek, D., Saab, P., Stafford, D., Tung, T., Venkataramani, V.:
Scaling memcache at Facebook. In: Proceedings of the 10th USENIX Conference
on Networked Systems Design and Implementation (NSDI 2013), pp. 385–398.
USENIX Association, Berkeley (2013)

13. Pina, L., Veiga, L., Hicks, M.: Rubah: DSU for Java on a stock JVM. In: Pro-
ceedings of the 2014 ACM Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA 2014). ACM, New York (2014)

14. Pukall, M., Kästner, C., Cazzola, W., Götz, S., Grebhahn, A., Schröter, R., Saake,
G.: JavAdaptor-flexible runtime updates of Java applications. Softw. Pract. Exp.
43(2), 153–185 (2013)

15. Russell, K., Bak, L.: The hotspotTM serviceability agent: an out-of-process high
level debugger for a JavaTM virtual machine. In: Proceedings of the 2001 Sym-
posium on JavaTM Virtual Machine Research and Technology Symposium (JVM
2001), vol. 1, p. 16. USENIX Association, Berkeley (2001)

http://dx.doi.org/10.1007/11785477_26
http://dx.doi.org/10.1007/978-3-642-10445-9_18

Dynamic Software Updating of Smart Grid Components 171

16. Stoyle, G., Hicks, M., Bierman, G., Sewell, P., Neamtiu, I.: Mutatis mutandis: safe
and predictable dynamic software updating. ACM Trans. Program. Lang. Syst.
29(4), 22 (2007)

17. Subramanian, S., Hicks, M., McKinley, K.S.: Dynamic software updates: a VM-
centric approach. In: Proceedings of the 30th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI 2009), pp. 1–12. ACM,
New York (2009)

18. Würthinger, T., Wimmer, C., Stadler, L.: Unrestricted and safe dynamic code
evolution for Java. Sci. Comput. Program. 78(5), 481–498 (2013)

	Low-Disruptive and Timely Dynamic Software Updating of Smart Grid Components
	1 Introduction
	2 Updating Smart Grid Components
	3 Dynamic Software Updating
	4 Lusagent System
	4.1 Parts of Lusagent
	4.2 Class Mapping
	4.3 Class Categorization and Auto-transformation
	4.4 Type Universe for Object Transformers
	4.5 Skippable Fields During Heap Iteration
	4.6 Programming Model
	4.7 Programming Framework
	4.8 Updating Runtime

	5 Case Study: Dynamically Updating Tango Controls
	5.1 Control-Flow Instrumentation
	5.2 Object Transformers

	6 Evaluation
	6.1 Programming Efforts
	6.2 Pauses for Updating

	7 Conclusion
	References

