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Abstract. Medium and low voltage electrical power grids are typically sparsely
instrumented, and thus, not observable in a systems’ theory sense. However, this is
a requirement to carry out state estimation methods. To this end, many approaches
for optimal sensor placement are proposed in the literature. Such methods are
typically motivated from a mathematical perspective, not taking the physical
properties of the network into account. As a consequence, the dimensionality of
themathematical problem is typically quite large resulting in significant numerical
complexity. Therefore, a new approach is proposed here which is based on ana-
lyzing the characteristic observable and unobservable nodes by using singular
value decomposition (SVD) and the breadth-first search method. The aim of the
method is to identify all possibilities for the placement of measuring equipment to
achieve observability. The proposed method does render the network observable
with a minimal number of sensors. In this way, this reduces the dimensionality for
conventional optimal sensor placement algorithms substantially.
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1 Introduction

Medium and low voltage electrical power grids are typically sparsely instrumented, and
thus, such systems are usually not observable in a systems’ theory sense [1, 2]. That is, the
complete network state cannot be inferred from the available and measured network
parameters. There are basically two situations which cause a lack of observability:
insufficient measuring equipment and redundant measurements that cannot contribute to
the observability of the system. The installation of additional measuring equipment is
rather costly, which is why optimal strategies for their placement are of great interest.
When additional instrumentation of the network is not feasible, typically pseudo-
measurements are used for state estimation instead. Owing to their poor accuracy, it is
also important to find the useful placements for such pseudo-measurements in order to
achieve good overall estimation quality.
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Classical sensor placement methods consider the whole network and aim at
determining a set of measured nodes which is optimal in the sense of minimal state
estimation errors [3–5]. Therefore, typically all possible measurements including
redundancy are considered one by one. This process is continued until the network is
observable, namely the Jacobian matrix of network has full rank. However, there are
many possibilities to install new measuring equipment, resulting in a high-dimensional
estimation problem. For practical networks the dimensionality and complexity of this
mathematical problem is so large that it results in serious numerical and computational
issues. To this end, we propose a new method for determining network nodes at which
measurements have to be added in order to achieve network observability. The idea is
that based on such kind of pre-processing, the computational complexity of the opti-
mization problem can be reduced significantly (Fig. 1).

The reason for a network being unobservable is that at some nodes the voltage
cannot be computed using the forward and backward sweep in the power flow cal-
culation. These nodes are here defined as breakpoints. The main idea of the here
proposed method is that adding power measurements at the nodes between the border
of the observable and the unobservable groups and the breakpoint, adding voltage
measurements at the nodes between the border of observable and unobservable groups
and border of enlarged observable group or aggregation the nodes on the sides of
border will then convert the unobservable group to an observable one. Thus, these
nodes are considered as potential points for the placement of extra measuring equip-
ment, pseudo-measurements or aggregation of nodes. In particular for large networks,
this pre-determination of appropriate placement positions reduces the dimensionality
for conventional optimal sensor placement algorithms substantially.

2 Mathematical Formulation of the Simplified Jacobian

The mathematical model relating measured network parameters z, such as nodal
voltage amplitudes, active and reactive power, to the nodal voltage magnitude and
phase values x is given by [6]

Fig. 1. Possible placements of network based on the proposed observability and voltage flow
analysis

A New Approach to the Analysis of Network Observability 123



z ¼ h xð Þ: ð1Þ

In static state estimation, a linearized variant of this relation is considered, leading
to the system of linear equations of a power system

z ¼ H � x; ð2Þ

where z is the vector of measurements, H is the Jacobian of h with respect to x, and x is
vector of 2n� 1 states. If for the rank r of the Jacobian H it holds that r\ 2n � 1,
then the power system is not observable in a systems’ theory sense. To this end,
2n� 1� r measurements have to be introduced in such a way that the resulting

Jacobian Hnew ¼ H
H0

� �
has rank r ¼ 2n� 1. This can only be achieved efficiently by a

well-structured measurement placement method.
As long as the voltages and admittances are non-zero, their value does not affect the

rank of the Jacobian matrix H. Thus, the observability analysis can be carried out using
the Jacobian matrix with initial value of voltage magnitude being 1 and voltage phase
being 0:

U ¼ eþ
ffiffiffiffiffiffiffi
�1

p
f where e ¼ 1 and f ¼ 0: ð3Þ

In the admittance matrix the sum of the elements in each row is zero
Pn

1 Yij ¼ 0.
Thus, the partial derivatives of nodal power with respect to nodal voltages that form the
Jacobian can be simplified. Hence, the Jacobian matrix for nodal power can be directly
written as

H ¼
@Pi
@e

@Pi
@f

@Qi
@e

@Qi
@f

" #
¼ Gi �Bi

�Bi �Gi

� �
: ð4Þ

Likewise, the partial derivatives for power from bus i to bus j that form the Jacobian
matrix can be simplified. Hence, the part of the Jacobian matrix for power from bus i to
bus j is finally given by

H ¼
@Pij

@e
@Pij

@f

@Qij

@e
@Qij

@f

2
4

3
5

¼
i j iþ n� 1 jþ n� 1

0 � � � gij 0 � � � �gij 0 � � � �bij 0 � � � bij 0 � � �
0 � � � �bij 0 � � � bij 0 � � � �gij 0 � � � gij 0 � � �

2
64

3
75:

ð5Þ

where in the row Pij only the element in the columns i is gij, columns j is �gij, columns
iþ n� 1 is �bij and columns jþ n� 1 is bij, the other elements in this row are equal to
zero. In the row Qij only the element in the columns i is �bij, columns j is bij, columns
iþ n� 1 is �gij and columns jþ n� 1 is gij, the other elements in this row are equal to
zero.
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3 Determining the Observable and Unobservable Groups

An unobservable power system can always be partitioned into a set of observable
groups and a set of unobservable groups. An observable group is defined as a network
region where, without additional measurements, the (complex) nodal voltage for all
nodes in this region can be calculated. It is assumed that at least the reference (slack)
node is observable.

Using the singular value decomposition (SVD) [7], the m� 2n� 1 dimensional
Jacobian matrix H can be decomposed into the matrix product

H ¼ USVT : ð6Þ

The columns of the m� m unitary matrix U are the eigenvectors of HHT ; the
non-zero elements of the m� 2n� 1 matrix S, which only has non-negative real
numbers along the main diagonal, are the square roots of the non-zero eigenvalues of
HTH; the columns of the 2n� 1� 2n� 1 unitary matrix V are the eigenvectors of
HTH. Assuming the elements r11; r22. . .rmm of the matrix S are non-zero, the columns
v1; v2. . .vm of V are the eigenvectors corresponding to the non-zero eigenvalues of
HTH, and the columns vmþ 1; vmþ 2. . .v2n�1 corresponding to the vanishing eigenval-
ues. Thus, the columns vmþ 1; vmþ 2. . .v2n�1 form an orthonormal basis for the solutions
to the homogeneous equation Hx ¼ 0. Rows for which all these columns of V have
zeros, belong to the observable network nodes. Thus, the remaining nodes are
unobservable.

4 Enlarging the Observable Groups

The breadth-first search algorithm [8] can be used to assign connected observable und
unobservable nodes to groups. Firstly, for each unobservable group the node which is
connected with an observable node is chosen as “top point” in the network topology.
From there, all neighbouring nodes up to the first branching point in the network are
identified. Say there are n connections L1; L2. . .Lnð Þ between the observable und
unobservable groups as shown in Fig. 2.

Fig. 2. Observable and unobservable group connected by n lines
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In order to identify the points where instrumentation has to be added, the parts of
the unobservable groups have to be added to the observable groups by assumed or
virtual measurements.

All values in the observable group G1 are known, but in the group G2 the voltages
cannot be calculated due to missing measurements. The bus i from G1 is connected to
bus j from G2. For observability, a new virtual measurement, which can be either the
complex power Sij from bus i to bus j, the complex power Sji from bus j to bus i, nodal
power Si of bus i or Sj of bus j, has to be added to enable the calculation of the nodal
voltage at bus j, so that the observable group can be enlarged.

By adding the virtual measurements to the unobservable group, the observable
group will be enlarged and the unobservable group will be decreased. The overall
structure of the network can then be illustrated as shown in Fig. 3.

All enlarged observable groups can be determined by repeatedly adding virtual
measurements. For radial networks, such as some medium and low voltage network,
the lines L2; L3; � � � Ln and L02; L

0
3; � � � L0n in Figs. 2 and 3 should not be considered.

In order to determine the exact placement positions, we analyse the local Jacobian
matrices for the unobservable groups as follows.

5 Determining Breakpoints Using the Jacobian Matrix

In the unobservable subgroup G2a, which can be added to the observable group exactly
one point exists at which the voltage flow calculation breaks down due to missing
measurements. We call this point a breakpoint. This breakpoint can be identified by
analysing the simplified Jacobian of the local topology as follows.

The Jacobian matrix Hp of G2a, which includes np, is extracted from the whole
system. Because exactly one measurement is missing to render this subgroup observ-
able, the rank of Hp is equal to 2np � 2. The matrix Hp can be written as

Fig. 3. Enlarged observable group
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Hp ¼ HpRe HpIm½ �; ð7Þ

where the block-matrix HpRe consists of the partial derivatives of powers S ¼ P;Qð ÞT
with respect to the real parts of nodal voltage, and HpIm consists of the partial
derivatives with respect to the imaginary parts of nodal voltage. The matrices HpRe and
HpIm, which have the same rank np � 1, can be transformed by Gaussian elimination to
the form

HpRe;HpIm ¼

1 a1;np
1 a2;np

. .
. ..

.

1 ai;np
. .
. ..

.

1 anp�1;np

2
666666664

3
777777775
: ð8Þ

The last column is a1; a2. . .ai 6¼ �1 and aiþ 1; aiþ 2. . .anp�1 ¼ �1 for some index i.
Assume that the ordering of the Jacobian matrix follows the ordering of nodes in the
considered network group. For the successful calculation of the voltage and power flow
in the network, the local Jacobian then has to be of the following structure

J ¼ g �g
b �b

� �
: ð9Þ

The elements in the last column after Gaussian elimination, which are equal to �1
indicate that at these nodes this structure is satisfied. Hence, the element aiþ 1 corre-
sponds to the breakpoint for that group. Consequently, a power measurement has to be
added between the previously identified border and the breakpoint of the subgroup.

If complex voltage (PMU) can be measured in the subgroup G2a, it means, a new
Jacobian matrix Hv with only one row, which has one nonzero element, will be inserted
in the Jacobian matrix HpRe and HpIm

H0
pRe ¼

HpRe

Hv

� �
;H0

plm ¼ HpRe

Hv

� �
: ð10Þ

No matter which element is nonzero, the new matrices H0
pRe and H0

plm have full
rank. Hence a complex voltage measurement can be placed at any node of the subgroup
to ensure the group becomes observable.

The method of summarising voltages is a special case of complex voltage mea-
surement. The according node s have the same voltage, namely the loss at the line is
ignored then. Thus, only the node s at the vicinity of the border should be summarized.

The above steps of identifying and grouping of the remaining unobservable nodes
and the subsequent identification of breakpoints have to be repeated until the whole
network is observable.
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6 Example

For illustrating the application of the proposed method, a 16 buses 15 branches network
model is employed. The network is shown in the figure below, where positions of
power measurements are marked with blue arrows (Fig. 4).

The possible placements of power measuring equipment are S1; S1;2; S2;1. . .
� �

,
which are in total 33 possibilities.

The simplified Jacobian matrix is calculated by Eqs. (4) and (5). The observable
group and the unobservable group of the network can be determined using the singular
value decomposition (SVD) method by Eq. (6). The matrix S is a diagonal 27� 31
matrix with number of the non-zero elements r1; r2. . . r27, corresponding to the rank
of the Jacobian matrix, that 3 measuring equipment are required to let the network
observable.

From the 31� 31 dimensional matrix V, the non-zero entries in columns
v28; v29; v30; v31 indicate the elements of the observable group. In the first iteration of
the algorithm for this example, the rows {1, 8, 9, 10, 23, 24, 25} of these columns of V
are zero. Consequently, the resulting observable group include the nodes {1, 8, 9, 10}
and unobservable group {2, 3, 4, 5, 6, 7, 11, 12, 13, 14, 15, 16}.

In the considered network topology, the nodes of the observable group are con-
nected to each other. In contrast, the nodes of the unobservable group are partitioned by
the breadth-first search algorithm into two groups {2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16}
and {7}, which are separated by the observable group.

The nodes at the border are found to be 1, 2 and 10, 7, for the different groups
respectively. Consequently, additional virtual measurements of powers S1;2 and S10;7
are inserted respectively such that the observable group is enlarged as described in the

Fig. 4. Topology and measurements of the example network (Color figure online)
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Sect. 4. The additional nodes in the enlarged groups are then {2, 3, 4, 5, 6, 11, 12, 15},
which before belonged to the unobservable group {2, 3, 4, 5, 6, 11, 12, 13, 14, 15, 16}
and node {7}, which before belonged to the unobservable group {7}., see Fig. 5.

Exactly one breakpoint exists in each enlarged group, and it can be found by the
Jacobian matrix Eq. (8) as described in the Sect. 5. In our example, the Jacobian matrix
of the two enlarged groups {2, 3, 4, 5, 6, 11, 12, 15} and {7} are calculated with the
original measurements, which are S2; S4; S5; S11; S12; S15; S5;4

� �
for the first group and

no measurement for the second group. For the first group, the Jacobian matrix with
respect to the real part with dimension 7� 8 of nodal voltage can be simplified by
Gaussian elimination to

HpRe ¼
1 0 � � � 0 �0:5
0 1 � � � 0 �1
..
. . .

. . .
. ..

. ..
.

0 � � � 0 1 �1

2
664

3
775 ð11Þ

From the last column, the breakpoint in this group is identified to be bus 3. In the
second group there is no measurement, and hence, the identified breakpoint is bus 7.

This process is to be repeated until the group of observable nodes contains all nodes
in the network, see Fig. 6.

Overall, in this example three additional measurements are required in order to
achieve observability. The algorithm deduced that power measuring equipment can be
installed respectively between bus 1 and 3 for first group, between bus 6 and 13 for the
second group and between bus 10 and 7 for the third group. Or measuring equipment of
power can be installed in any bus of the three enlarged groups in Fig. 6.

The quantity of possible placements of power measuring equipment is thus reduced
by a factor of three from 33 to 11. A optimal placement method can use this infor-
mation to determine the optimal placement of measuring equipment with respect to the
chosen optimality criterion.

Fig. 5. Observable group before and after first iteration
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7 Conclusion

In this paper a new algorithm based on the determination of the border between groups
of observable and unobservable nodes and so-called breakpoint has been proposed to
determine placements of measurements by taken into account the physicalities of the
network. The observable and unobservable nodes are divided utilizing the Singular
Value Decomposition (SVD) and the breadth-first search method. It was shown how
adding virtual measurements can enlarge the group of observable nodes. By analysing
the Jacobian matrix of the enlarged group, the breakpoint of computable power flow
can be identified. The proposed method was illustrated using a 16-bus test system,
where the algorithm found the correct minimum number of sensors to be placed and all
possible placements of measurements. Using the proposed algorithm, the dimension-
ality of the optimal placement problem could be reduced by a factor of three.

Classical optimal placement methods are based on solving a complex mathematical
discontinuous optimization and problem. The here proposed method utilizes the net-
work topology and technical arguments to determine possible placement settings. The
outcome of this algorithm could then be used to overcome the computational com-
plexity of classical placement methods. The clear separation into observable and
unobservable nodes and the subsequent algorithmic enlargement of the observable
groups can help to make the network observable with fewer measurements, because
nodes which do not contribute to the observability can be ignored.

Acknowledgement. This work is part of the European Metrology Research Program (EMRP)
Joint Research Project ENG63. The EMRP is jointly funded by the EMRP participating countries
within EURAMET and the European Union.

Fig. 6. The result of algorithm
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