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Abstract. The concept of demand profiling is established in order to
collect, analyse and develop the detailed knowledge of the consumption
habits, either in domestic or non-domestic usage. In this paper the state
representation of electrical signal is used as the profiling formula to model
the diurnal (daily) and annual cycle demand trend of electricity con-
sumption across the grid. The available demand dataset from the public
domain is applied as the input for the profiling formula. The developed
demand profile is further to be forecast and assimilated using the active-
aware-based Ensemble Kalman Filter (EnKF). The resultant EnKF esti-
mations may provide the assessment of nationwide demand within the
energy network, thus consider the need for the present and future net-
work reinforcement or upgrades. The ability of EnKF in forecasting the
demand is presented, along with the limitations.

Keywords: Demand profiling - Demand forecast -+ Ensemble Kalman
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1 Introduction

The national energy system is currently experiencing increasing stresses on
demand and network load due to: variable heating in colder seasons; the addi-
tion of intermittent renewable generators; insufficient storage facilities. Further-
more, the needs to concentrate on balancing the electricity supply, the emission
reduction targets, and the affordable operating costs are the current “energy-
trilemma” problem [1]. The highest priority in optimising the renewable energy
system, for instance, does not guarantee the security of energy supply due to the
nature of renewable intermittency [2]. Therefore, various smart initiatives such
as the introduction of disruptive technology [3] into the grid utility, decentralised
energy distribution, and the high efficient low carbon power plants are deployed
in mitigating the trilemma of the energy problem. To this end, the demand pro-
filing concept are established after the inception of the 1950’s Electricity Council
Load Research and followed by the 1998 Electricity Pool Programme [4]. Such
concepts are established to collect, analyse and develop the detailed knowledge of
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the consumption habits, either in domestic or non-domestic usage [4,5]. The elec-
tricity grid operator nowadays use demand profiling as the important strategy
to plan the amount of electricity to be provided to the entire network. Addi-
tionally, demand profiling also illustrates the capacity trend of the electricity
market, whether to power up a more responsive or expensive generation to meet
the particular demand [6].

In addition to demand profiling, a good forecasting technique is required in
order to provide the demand forecast for few days ahead. In this paper, the
Ensemble Kalman Filter (EnKF) is applied in forecasting the demand profile.
The EnKF justifies the calculation effort to demand forecasting and also aims
to compute demand forecast based on the adequate amount of ensemble sizes
for speedy delivery of forecast results. The resultant EnKF estimations may also
provide the electrical inventory for assessment of nationwide demand and energy
network upgrades.

The organisation of the paper is as follows. Section 2 presents the modelling of
demand profile, the introduction and the formulation of EnKF. Section 3 demon-
strates the results of demand profiling and EnKF forecast. Section 4 concludes.

2 Methodology

2.1 Modelling of Demand Profile

The electrical consumption representing the demand profile changes periodically
with respect to time [7]. Such periodical trend or time series of the electricity
data should have diurnal, D(t), and annual, A(¢), periodicities [7]. The state
representation of the consumed electrical signal can be generally expressed into
the formula as follows:

Xi(t) = A (;1) + D Gz) +es, (1)

where X;(t) is the true state of electrical consumption at time ¢, A(t) is
the annual cycle function, D;(t) is the diurnal cycle function, 77 is the annual
periodicity that is 365 days, 75 is the diurnal periodicity that is 24 h, ¢ is the
time variable sampled at hourly rate, ¢; is the signal noise, ¢ indexes the types
of consumers to be considered.

The A(t) and D(t) are used to describe trends of annual and daily demand
profiles. The component of € is the various influencing factors that affects the
overall daily demand profiles. Typical influencing factors are: (1) Seasonal vari-
ations; (2) Building characteristics; (3) Weather and temperature effects; (4)
Holiday effects; (5) Consumers consumption behaviour. The formula (1) is fur-
ther used as the profiling formula in developing the complete annual trend of a
demand profile representing ith consumer.

Depending the availability of the data, the A(t) and D(¢) can be formulated
using the real demand data in the public domain (e.g. [8]). In the case of insuf-
ficient data required to model the demand profile, the paper by [7] proposed
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an adaptive seasonal model based on the Hyperbolic tangent function (HTF) to
model the electricity consumption for different types of consumers.

2.2 Ensemble Kalman Filter

Based on the historical UK demand reported in [8], the historical demand has
shown fluctuations corresponding to different time periods. This is due to the
influencing factor that affects the overall energy demand across the grid. There-
fore short-term forecast and assimilation of energy demand are necessary. Sev-
eral existing forecast methodologies are available but with present limitations.
According to the author [9], both the Seasonal Autoregressive Integrated Moving
Average (SARIMA) and Autoregressive Integrated Moving Average (ARIMA)
methods failed to forecast electricity demands with seasonal latent variables.
Meanwhile, large numbers of Artificial Neural Networks (ANN) were proposed
to handle seasonal variations but with potential drawbacks, where deseasonalis-
ing and detrending of pre-processed raw data is required in order to model sea-
sonal trends accurately [10]. Additionally, the forecast using ANN is not always
accurate and realistic [11].

Hence, a robust, active-aware-based forecasting mechanism is required to
forecast the uncertain trends of the demand, either in long or short term forecast.
In order to perform the demand forecast, EnKF is applied in this paper to
forecast the demand.

EnKF was first introduced by Evesen [12] and is generally a Monte-Carlo
based recursive filter approach for generation of an ensemble of model repre-
sentations. An ensemble is actually a system representation through a random
sampling of the system distribution [12]. EnKF is applied in sequential data
assimilation and even a few ensemble members have the ability to exhibit large-
scale covariance behaviour of a system considered [13].

2.3 EnKF Formulation

In this paper, formulations of EnKF by [2,14-18] are followed, with only key
equations and parameters are outlined. Such EnKF formulation provides the
foundation for the demand forecast and assimilation.

EnKF consists of two important steps, the forecast and analysis step. In the
forecast step, as the true (actual) state is not always available, new ensemble is
created in the state space by forecasting the ensemble mean as the best estimate
of the state [14-16]. In other words, a new ensemble is created based on the
realisations in each of the model state through the model dynamics (simulator).
It is then reflected as the first observation of the actual system that will be
incorporated into the model state in (2).

where j indexes the ensemble member, y? is the state vector of the model sim-
ulator, y;) is the new formation of a set of ensemble through the prediction of
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the model state y” at ensemble member j, w; is the model process noise. The
superscript p denotes the priori state vector.

Instead of adding complex components to yP, for simplicity the component
of yP can be formulated as:

=3 ®)

In the simulation experiment, m is the model parameters of the energy con-
sumption profile from the dynamical model (1). It is the profiling formula that
describes the demand profile for ith consumers. As the component m describes
the demand profile, m remain constant throughout the data simulation except
the model process noise. This results in similar energy usage pattern from groups
of consumers but with varied energy usages. The d is the model prediction of
the energy consumption and changes with the simulation at every time step.

The input component of y? can be further extrapolated as:

I @)

The m; ¢ refers to the component m (3) of the dynamical model (1). The e; ;
is the energy demand forecast that also corresponds to the component d. The ¢
indexes the consumer and ¢t is the time step.

As in line with [14], initial ensemble members of y? are sampled from a
normal distribution with the zero mean and standard deviation.

Using (2) and (4) new sets of priori ensemble y¥ are created. Collections of

yP = [mm,mz,z, ey Mty €11, €22, vy €5t

forecasts yf are stored into a matrix form Y? to denote the collection of the
priori ensemble:

YP = [y:fv 11‘37 seey yf? ey y]pife:la (5)

where N, is the total number of ensemble member.

During the analysis step, new observations from measurement sets are estab-
lished through ensemble representations. In order to obtain consistent error prop-
agation the observations have to be considered as random variables [18]. The
actual measurement is used as the reference and the random measurement noise
is added to the measurement to obtain the perturbed observations [15,17,18]. In
this paper, the actual measurement set d (also the model prediction) is perturbed
using the ensemble representations, this later forms another set of ensemble of
perturbed observations denoted by dops ;:

dobs,j =d+ Vj, (6)

where v; is the measurement noise at jth ensemble member.

Both yf and dgps,; are perturbed with model error: the process noise w with
zero mean and covariance () for Y? and similarly, the measurement noise v with
zero mean and covariance R for d, i.e. values w and v are assumed to be drawn
from Gaussian distributions as w ~ N (0, Q) and v ~ N (0, R). The errors are very
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important to be defined in the EnKF, because without errors the system may be

over-specified and no solutions resulting from EnKF propagations obtained [17].
The priori ensemble member yf will be assimilated using the EnKF updating

formula in order to obtain the updated posteriori ensemble yi as follows:

y;” = y;n + CyHT(HCYHT + R)il(dobs,j - Hyf)a (7)

where H is the measurement operator that relates to actual state. Cp is the
priori error covariance. R is measurement covariance error. The dops ; in this
case corresponds to HY'P.

Using the formula (7), the assimilation process is achieved by updating y;) ,
assimilating yf and dops,; by taking the mean of the perturbed observations
dobs,; as the actual observation. Each of the yf ensemble member is updated to
obtain y}'. The updated yj is stored into a matrix form denoted as Y*.

In order to examine the performance of EnKF, the root-mean-square error
(RMSE) of the ensemble mean y from the actual state of the model [19] is used
in this paper and is calculated as:

K
1 — 2
RMSE = ??:1 (V- Xi)", (8)

where X denotes the actual state of electrical consumption from the dynamical
model (1) and k is the model state variable.

3 Results

3.1 Numerical Simulation of Demand Profile

The half-hourly diurnal profiling data from the UK Elexon portal [20] is adopted
in examining the diurnal seasonal demand profiles of spring, summer, autumn
and winter correspondingly. The random perturbation of noises are generated to
indicate the signal noises as the influencing factors. In this paper, the domestic
household profile (out of eight clustered Profile Class) from the UK Elexon por-
tal [20] is selected for further examination of the overall diurnal demand (D;(t)).
The clustered Profile Class represents large populations of similar demand pro-
file within consumers [20]. On the other hand, the 2015 annual demand data
from the UK National Grid portal [8] is extracted that corresponds to A(t).

The A(t) obtained from the portal [8] is converted to have identical temporal
scale with D;(t). Those D;(t) will be ‘stitched’ together with A(t) in order to
form a resultant annual trend representing the overall household demand across
the grid.

The analytical expressions of A(t) and D;(t) based on (1) are to be further
applied in EnKF for the demand forecast and assimilation process.

Figure 1 shows half-hourly diurnal energy consumption profile for domes-
tic households with seasonal variations. Based on Fig. 1, it can be seen that a
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Fig. 1. Diurnal half-hourly energy consumption (demand) cycles for a domestic
household.

household electricity consumption drops during the working hours and maximum
demand occurs during the peak period (1700-1900). Additionally, the amount
of energy consumption during the winter is much higher than other seasons due
to the high amount of heating.

The plot from Fig. 1 is aggregated that further forms the half-hourly annual
energy consumption as shown in Fig. 2, where D;(t) is stitched with A(t) to form
the complete annual household demand trend. Similarly, Fig. 3 shows the reduced
temporal solution plot of Fig.2, where the average annual-based daily energy
consumption for the domestic household is plotted. The total estimated annual
energy consumption is 4023kWh and such estimated value is similar to the overall
household energy consumption usage as reported by the UK Department of
Energy and Climate Change (DECC) [21]. Henceforth, the developed household
energy demand trend is a good representation profile for the domestic household
consumers.

3.2 EnKF Numerical Simulation

The EnKF simulation in this case involves short-term forecasting and assim-
ilation of the energy consumption using the developed demand profile for the
domestic household. The modelled profile of X, (¢) from the dynamical model (1)
is the observation that reflects the actual system that will be incorporated into
the model state in (3). Since the household demand data is available, variable y?
in (3) contributes to direct model predictions (d) of the energy demand (based
on (1) that formulates the household demand profile (m)).
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Fig. 2. Annual energy consumption (demand) cycles for a domestic household.
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Fig. 3. Average annual-based daily energy consumption (demand) cycles for a domestic
household.

The priori ensemble y? is created using (2), where j = 1,2, ..., N, denotes the
ensemble member index and N, is the total number of ensemble member. Initial
ensemble members of yP are intended to be drawn from a normal distribution
with the mean and standard deviation N(0,20). Additionally, the model error



118 E.T. Lau et al.

w is sampled from w ~ N(0,1). The measurement error, on the other hand, is
sampled from v ~ N(0,0.5).

In the EnKF, the perturbed observation of demand data dgps,; is based on
the model prediction d using the formula (6). Different realisations are created
(N, = 10, 50, 100, 500, 1000) and propagated at every time steps. The Y? in (5)
is the collection of the priori ensemble yf , which is assimilated along with dopbs ;
and updated to form the posteriori ensemble (yj') through (7).

The ensemble means of the energy demand with different realisations N,
are computed that allow comparison of the convergence in relation to the true
(actual) state of the model. The RMSE of the propagated ensemble mean in
relative to the actual model state is calculated using (8) in order to examine the
robustness of EnKF with different realisations.

For feasibility purpose, total of five days temporal resolutions are adopted to
demonstrate the EnKF propagation results. The five days plot with datasets of
the actual energy demand and propagation of Y* with different ensemble sizes
is shown in Fig. 4. The figure shows that the larger the ensemble size, the better
Y estimation converges towards the actual energy demand.

Actual

EnKEF size = 10
EnKEF size = 50
EnKF size = 100
EnKF size = 500

EnKF size = 1000
1.5 =

Energy consumption (kWh)
I

0.5

Time (Day)

Fig. 4. Five days of household energy demand with different EnKF realisations.

The tabulated RMSE values corresponding to different EnKF realisations are
shown in Table 1.

The RMSE values from Table1 also indicate that the larger the ensemble
size, the smaller the RMSE value, and thus the better the EnKF estimations.
In this case, an ensemble of size 100 is sufficiently enough to provide accurate
demand forecast with acceptable RMSE error.
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Table 1. The RMSE value with different EnKF Realisations.

Number of ensemble (N.) | RMSE value
10 0.180
50 0.087
100 0.050
500 0.035
1000 0.020

4 Conclusions

This paper presents the demand profiling using the available diurnal demand
data in the public domain. A domestic household consumer is selected and to
be further stitched together with the annual demand trend that is also avail-
able in the public domain that forms the annual energy demand for a household
consumer. The state representation of electrical signal is used as the profiling for-
mula to model the diurnal and annual demand trend of the domestic household.
The profiled annual demand provides the realistic estimation that is comparable
with the current UK domestic household energy usage. As there are available
demand data in the public domain, this has added the flexibility and simplicity
in modelling the overall energy demand with only a few parameters.

The resultant developed household demand profile is further applied in the
active-aware-based EnKF field for demand forecasting and assimilation. The
EnKF evaluation results demonstrate the capability and robustness of EnKF
in forecasting and matching the energy demand, either in real-time or based
on prior knowledge and historical records. However, as EnKF is a Monte Carlo
type of data assimilation, the low EnKF realisation will result in poor forecast.
The realisation of N, = 100 in this example provides the sufficient convergence
of EnKF propagations. For this reason, EnKF allows the convergence of data
assimilations, on condition that the ensemble size selected is sufficiently large.

As the current EnKF application in this paper is demonstrated in a rela-
tively simple model, the EnKF will however become complex when considering
the individual demand profiles (for instance: office, hotel, school, supermarket,
restaurant, stadium, and hospital). The nonlinearity in different profiles of con-
sumers will arise and the identification of state variables, initial conditions and
prior knowledge of the EnKF model are therefore necessary in order to provide
the better demand forecast with minimised EnKF propagation errors.
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