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3 Département ITI - Institut Mines-Telecom, Telecom Bretagne Lab-STICC UMR
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Abstract. Modern cities, industrial plants, cars, trucks, and vessels,
among others, make extensive use of cyber-physical systems and sensors.
These systems are very critical and contribute to assist decision making.
Large data streams are thus produced and analyzed to extract informa-
tion that allows building knowledge through a set of principles called
wisdom. However, because of multiple imperfections, as well as intrinsic,
contextual, and extrinsic conditions that alter data, the quality of the
generated streams must be evaluated, to determine how relevant they
are for decision support. This paper presents a methodology to moni-
tor cyber-physical systems by quality estimation, which defines suitable
evaluation characteristics for pertinent analysis. Quality assessment is
defined for data imperfections, information dimensions, knowledge fac-
tors, and wisdom aspects. The case study of a cyber-physical network of
a liquid container training platform is presented in detail, to show how
the approach can be applied. Obtained measures are multidimensional,
heterogeneous, and variable.

Keywords: Monitoring · Sensor data processing · Multi-source sensor
network · Cyber-physical system · Data quality · Information quality

1 Introduction

Cyber-physical systems have become necessary in many realms like transport,
manufacturing, home, and cities automation. These systems are composed of
sub-systems, which process information and support decision making based on
different data sources as sensors, control, and communication systems. Increas-
ingly, multiple systems assist human operators to accomplish efficiently and
safely their tasks. To this end, critical monitoring data and information are con-
tinuously generated. These fundamental systems are cyber-physical as they inter-
act with the environment making sensor measurements and executing responses
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using actuators. Usually, in order to perform external control and monitoring,
these systems are also connected to networked stations.

Infrastructure governance is as a consequence completely based on decision-
aided or automatic responses, defined by the obtained information, according
to a so-called wisdom. Moreover, cyber-physical systems are being developed to
improve their performance, conceive new functionalities, or simplify their use.
Given the fact that a growing number of these systems are currently deployed,
voluminous data streams are permanently produced.

An emerging problem created by such enlarged scale and diversity of sys-
tems is the complexity to analyze generated data, taking into account specific
operational contexts. Numerous factors can alter collected data and extracted
information changing the expected impact on decision support, from innocu-
ous to catastrophic. Therefore, methodologies and models of quality estimation
emerge as a possibility to determine, if collected data and extracted information
are relevant for decision support.

Our work proposes to address this issue, defining a quality evaluation
methodology, identifying which analysis elements are the most pertinent to
provide suitable system’s streams quality characterization. This evaluation is
intended to support decision makers responsible for the corresponding cyber-
physical systems. Therefore, if the quality of data, information, knowledge, and
wisdom are evaluated with respect to a given operational objective, an adapted
response is likely to be given. On the other hand, quality evaluation has sev-
eral implications. For example, it can be used to discover potential evidence of
suspicious anomalies to be further examined by cyber-security tools. It can also
permit to identify malfunctions in information systems, or sources that after
a qualification, can be trusted and integrated for decision aid, in spite of such
imperfections. To provide suitable analyses, quality evaluation must be carried
out according to the same functional constraints of the examined system.

Data and information quality have been widely studied in other domains like
Management Information Systems (MIS), Web Information Systems (WIS), and
Information Fusion Systems (IFS) [11]. However, none of the developed methods
can be directly and fully applied to cyber-physical systems. The main reason is
that those approaches have been developed for specific data and a particular
application. Moreover, the definition of data and information quality assessment
is not obvious in cyber-physical streams, given the significant differences in mea-
surement’s times and test points. Few other initiatives have conceived automatic
quality evaluation methods applied to particular cyber-physical systems, like sen-
sors data for personal health records [9] and wireless sensor networks [4], adapted
to very specific user needs.

The proposed contribution relies on three principles. First, quality evalua-
tion of data, information, knowledge, and wisdom are dynamic and derived from
intrinsic, contextual, and extrinsic dimensions related to each examined sub-
system. Second, quality evaluation is independent of the associated functional
task carried out by the sub-system components. Finally, some of the quality
evaluation concepts studied by the MIS, WIS, and IFS methods are adapted to
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cyber-physical systems. The rest of the paper is organized as follows. A defini-
tion of the proposed methodology is presented in Sect. 2. To illustrate how the
proposed method could be applied, the case of a liquid tank prototype is studied
in Sect. 3. Discussion and conclusions are presented in Sect. 4.

2 Quality of Sensor Streams

This section defines the main components of the proposed quality evaluation
method. The key entities are introduced in Sect. 2.1, explaining the difference
between data, information, knowledge, and wisdom quality evaluation. Subsec-
tions 2.2, 2.3, 2.4 and 2.5 are dedicated to describe separately each quality eval-
uation approach. In Sect. 2.6, a global quality measurement method is defined
integrating the previously defined components.

2.1 Data, Information, Knowledge, and Wisdom

To avoid a well known general confusion regarding the concepts of data, infor-
mation, and knowledge [14], we consider essential representation notions of the
well known DIKW - Data, Information, Knowledge, and Wisdom - pyramid.
Its definition can be summarized as know-nothing, know-what, know-how, and
know-why, respectively [13].

Accordingly, in cyber-physical systems: data are the streams of bits with
no comprehensible sense (know-nothing), including single values, multidimen-
sional signals, and text; information is data with a semantic sense in a context
(know-what); knowledge is how this information can be used in a particular case
depending on wisdom (know-how); and wisdom is the set of principles, usually
created by progressive learning from experiences to explain how information
can be transformed into knowledge (know-why). Figure 1 illustrates how these
entities interact in the context of the proposed quality evaluation methodology.

Taking into account contextual factors, data and information definitions can
be adapted to cyber-physical systems applying:

Information = Data + Contextsub-system (1)

where the context is formally defined by the corresponding sub-system and sys-
tem specifications, to be represented as follows:

Contextsub-system = Sub-systemspecs + Systemspecs (2)

The context is defined by the sub-system specifications available in one or
several data-sheets and the characteristics of the whole system. Besides, the
environment is considered as a variable of the system specifications, i.e. where
and how it is installed, besides which are its attributes (fixed or variable).

Knowledge is the result of a principle - called wisdom - applied to information.
This principle can be for example a mathematical expression, a physical law, or
a predefined rule. When knowledge is not fully compatible with the studied
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context, it requires to be adapted to preserve coherence. In general, multiple
information streams inputs are necessary to create knowledge, represented by:

Knowledge = Wisdom(Information) (3)

The proposed method defines a quality evaluation for each one of the
described entities. These quality evaluations are presented in the next sections.

2.2 Data Quality

Studies on data quality have been carried out focusing on various application
domains. Multiple categories of dimensions identified by data consumers were
used in Total Data Quality Management (TDQM) to define what is data quality
[12]. The Cost-effect Of Low Data Quality (COLDQ) examined a data quality
approach according to some enterprises’ needs [6]. Several quality metrics were
proposed by the Data Quality Assessment (DQA) [8]. Data Quality in Cooper-
ative Information Systems (DaQuinCIS) was introduced to assist collaborative
data quality evaluation [10]. In financial information systems, the Quality Assess-
ment on Financial Data (QAFD) studied how to improve the quality of relevant
data [2]. Also, for other types of organizations and businesses, the Comprehen-
sive methodology for Data Quality management (CDQ) searched to enhance
efficiency and effectiveness by increasing data quality [1].

On the other hand, from an information processing point of view, data quality
can be measured by a characterization of key imperfections as follows [7]:

– Error (ierr): Data are erroneous when values are different from the true
data.

– Incomplete (iinc): Data are not totally supplied.
– Imprecision (iimp): Data denote a set of possible values and the real value

is one of the elements of this set.
– Uncertainty (iunc): Data cannot be stated with absolute confidence.
– Unavailable (iuna): The system cannot obtain a value because of its limi-

tations or due to missing measurements.

Erroneous data affect the integrity of the system and it should be discarded
when detected. As a result, all information obtained from wrong data is also
erroneous and its quality evaluation has no sense. Data affected by the other
four imperfections preserve its integrity and can still supply valid information.

In some cases, observations should complete identified imperfections to ame-
liorate quality estimation. For example, data are frequently supplied with cor-
rection codes. Corrected data are not imperfect, although corrections may have
an impact on quality, depending on the context. Similarly, unavailable data can
also be detected when needed environment properties are provided (a condition
to point out whenever possible).
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2.3 Information Quality

Related specialized studies on information quality are less diverse than those on
data quality. For example: the information quality evaluation proposed by the
Total Information Quality Management (TIQM) searched to improve business
data warehousing and raise benefits [3]; and a methodology for Information
Quality Assessment (AIMQ) evaluated and benchmarked information quality
[5]. It is nevertheless important to note that studies cited in the previous section,
also handle partially the corresponding questions about information quality. Yet,
none of them is directly applicable to cyber-physical systems in general.

To specify our information quality evaluation approach, two considerations
are underlined. Instead of placing humans as just data consumers and despite
the existence of a wide range of automatic processes, cyber-physical networks
relate to humans as decision-makers. Besides, given that any information can be
part of different tasks, quality evaluation should be task-independent. For this
reason, several parameters are necessary to define tasks’ quality requirements.

In the absence of a global consensus on basic methodological elements to
measure information quality, we concentrate on the most known approaches to
define an adapted method for cyber-physical systems. The proposed method con-
sists of customized components of the previously cited TDQM, COLDQ, DQA,
DaQuinCIS, QAFD, CDQ, TIQM, and AIMQ approaches. Note that in these
works quality dimensions were structured in four groups: intrinsic, contextual,
representational, and accessibility. In our case however, the basic quality view
relates to sub-systems, which are rarely affected by the representational charac-
teristics. As a consequence, only three groups of quality dimensions are applied.
Intrinsic dimensions are defined when sensors are examined separately, without
connections. Contextual dimensions are assessed when it is known where the
sub-system is installed and what it is measuring. Extrinsic dimensions appear
when the sub-system connections are identified.

We define therefore three groups of information quality dimensions, conve-
nient for cyber-physical sub-systems, to manage the lack of specifically designed
dimensions in the literature. Namely, the Intrinsic category is the group of qual-
ity dimensions defined for an isolated sub-system (Table 1). The Contextual
category includes the quality dimensions that study a sub-system as part of a full
system (Table 2). The Extrinsic category contains the dimensions that permit
to evaluate streams quality considering interconnected sub-systems (Table 3).

2.4 Knowledge Quality

The subjects of knowledge and wisdom quality for networked cyber-physical
systems have not been treated in the literature. We propose therefore the cor-
responding definitions, factors, and aspects, required in the framework of our
study. Knowledge is produced by the direct application of wisdom to informa-
tion. This implies that the quality of knowledge is considerably influenced by
both, information quality and wisdom quality. Moreover, in the case of cyber-
physical systems some particular factors should also be taken into account:
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Table 1. Intrinsic information quality dimensions in cyber-physical systems

ID Name Description

idsp Source precision The extent to which every information under unchanged
conditions show the same results due to the source
acquisition

idacc Accuracy The extent to which extracted information is close to
the true information

idobj Objectivity The extent to which information is unbiased,
unprejudiced, and impartial

idrep Reputation The extent to which information is highly regarded in
terms of its source or content

idobs Obsolescence The extent to which information is valid through time

idfre Freshness The extent to which information is new

idtru Trust The extent to which information is trustworthy

idacq Acquisition cost The cost to acquire the information

idrea Readable The extent to which data used to obtain information
are noiseless and intelligible

idres Resolution The extent to which data used to obtain information
are distanced in sampling

iditg Integrity The extent to which information is complete and the
provider sub-system is fully available

idcns Consistency The extent to which information is presented in the
same format

iduni Uniqueness The extent to which information is not repeated

Table 2. Contextual information quality dimensions in cyber-physical systems

ID Name Description

cdrp Real precision The extent to which every information under unchanged
conditions shows the same results due to the use of the
sub-system

cdcla Clarity The extent to which information is comprehensible through
other information

cdval Value-added The extent to which information is beneficial and provides
advantages from its use

cdtim Timeliness The extent to which information is expected by the system

cdcmt Completeness The extent to which information is know in a complete
context

cdcnc Concision The extent to which information is compactly represented

cdvol Volume The extent to which the volume of information is
appropriate for the task at hand

cdbel Believability The extent to which information is regarded as true and
credible
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Table 3. Extrinsic information quality dimensions in cyber-physical systems

ID Name Description

edacc Accessibility The extent to which information is available, easily,
and quickly retrievable

edsec Security The extent to which access to information is
restricted appropriately to maintain its security

edeu Ease of utilization The extent to which information is easy to use and
apply to different tasks

edman Manipulation The extent to which an information link is easy to
manipulate

edint Interpretability The extent to which information is in appropriate
languages, symbols, and units, and the definitions
are clear

edcmp Compatibility The extent to which information is comprehensible
for different sub-systems

edfor Format The extent to which information respects a specific
format

edund Understandability The extent to which information is easily
comprehended

cdred Redundancy The extent to which other sub-systems provide the
same information

edcoh Coherence The extent to which information is logical with
respect to other information

– Completeness (fcom): The extent to which information sources needed by
wisdom are available.

– Error cost (ferr): The potential cost produced by erroneous knowledge.
– Relevancy (frel): The extent to which knowledge is applicable and helpful

for the task at hand.

2.5 Wisdom Quality

Depending on the type of wisdom - mathematical principle, physical law or
predefined rule (based on experience) - as well as the related source, attributes,
and pertinence, among others, the confidence on wisdom changes. Hence, to
evaluate wisdom quality six aspects should be examined:

– Experience (aexp): The extent to which wisdom is verified through a defined
knowledge put in practice.

– Confidence (acon): The extent to which wisdom is highly regarded in terms
of its source or content.

– Accessibility (aacc): The extent to which wisdom is available, easily retriev-
able, and modifiable.
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– Interpretability (aint): The extent to which wisdom is clearly defined in
appropriate languages, symbols, and units.

– Security (asec): The extent to which access to wisdom is restricted appro-
priately to maintain its security.

– Completeness (acom): The extent to which wisdom takes into account the
variables that influence it.

2.6 Quality Assessment

The proposed quality evaluation methodology (Fig. 1) regulates the transforma-
tion of data streams into information and knowledge, depending on the measured
quality of each entity. Quality evaluations of DIKW are individual, in order to
handle appropriately a large scope of qualification conditions. For instance, a
data-set containing several different information elements, which depending on
the availability of multiple wisdom principles, can potentially generate various
knowledge streams. Therefore, the separate quality evaluation of each particular
DIKW sequence contains four unique vectors, specifically: DQV (Data Quality
Vector), IQV (Information Quality Vector), KQV (Knowledge Quality Vector),
and WQV (Wisdom Quality Vector), encompassing previously defined proper-
ties related to imperfections, dimensions, factors, and aspects, respectively. Since
the evaluation of these properties is rarely exhaustive because of variable unavail-
ability of one or several elements, the proposed method intends to define a com-
plete quality evaluation framework that can be applied according to changing
practical conditions.

Fig. 1. Entities interactions in the proposed evaluation method.

Depending on the evaluated sub-system, units of quality vectors are likely
to vary, depending on the reference system of measurement and the declared
attributes’ types (Boolean, string, char, word from a dictionary, integer, real,
etc.). This fact makes necessary to represent separately the imperfections, dimen-
sions, factors, and aspects, in the evaluation vectors. For instance, to evaluate
the quality of a sub-system on which a data stream with K data imperfections
(Ii), produces information requiring to examine L dimensions (Di), leads to the
definition of the following DQV and IQV vectors:

DQV ∈ {I1...IK} (4)

IQV ∈ {D1...DL} (5)
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By definition, knowledge quality is related to information quality (IQV)
and wisdom quality (WQV). Hence, for a knowledge stream created with M
information streams and assessed with N factors (Fi) and KQV is defined as:

KQV ∈ {IQV1...IQVM ,WQV, F1...FN} (6)

Similarly, wisdom quality formed by P aspects (Ai) defines the following
WQV vector:

WQV ∈ {A1...AP } (7)

Additionally, specific constraints identified on the system components should
be applied to evaluate quality. These constraints include limitations of the ana-
lyzed sub-system, restrictions inherited from other connected sub-systems, or
derived from the main system. Whenever different constraints are identified for
a given dimension characteristic, quality evaluation is carried out assuming that
the sub-system should respect the most restrictive ones (usually related to the
need for responses in real time and computational limitations).

3 Simple Case Study

To test the proposed quality evaluation approach we use a cyber-physical plat-
form representing a liquid container subsystem. Such platform commonly used
for training on networked control infrastructure, can be found at different scales
in cities, homes, industrial plants, or vehicles, to contain liquids like water or fuel.
It is composed by two tanks (cisterns): a main tank (Cistern B) and a secondary
tank (Cistern A). While the secondary tank fills the main tank using Pump 2,
the main tank (smaller than the secondary) provides the liquid to the system.
Consumption is simulated by a valve placed at the bottom. To simulate when
the main tank is filled, the secondary tank can transfer the liquid contained in
the recovery tank by means of Pump 1.

This platform is controlled by a Schneider programmable logic controller
(PLC), accessible from a touch screen and through Modbus1 network commands.
Two types of sensors generate data: four discrete sensors (in Cistern A) and one
ultrasonic sensor (in Cistern B). Discrete sensors are switches activated when the
liquid makes them float. The level of liquid present on the main tank is measured
by the ultrasonic sounder. All these components are connected in a local network,
which can be linked to remotely monitor and control the whole system. The
network schema is shown in Fig. 2, including transmitted information and used
protocol for the main connections.

Analysis of system performance is done at a control and monitoring machine
connected to the platform network. The system receives data, a binary
sequence used by communication protocols that is not directly comprehensible.
1 Modbus is an open OSI level 7 protocol developed by Scheinder Electric in 1979

and largely used in SCADA (Supervisory Control and Data Acquisition) systems
(http://modbus.org/docs/PI MBUS 300.pdf).

http://modbus.org/docs/PI_MBUS_300.pdf
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Fig. 2. Training platform network.

This sequence initializes the quality evaluation process. Information is defined
when a protocol decodes the data and the context gives a meaning to values,
making use of the sensors’ data specifications and tank size. The resulting infor-
mation is the measured level of liquid, represented by a comprehensible value
(e.g. 30 L of liquid). To obtain this information a measure of distance obtained
by the ultrasonic sensor is transformed to a measure of volume, according to the
tank dimensions. Furthermore, knowing the liquid consumption of the system,
its autonomy can also be determined defining related knowledge (e.g. 20 min).
This principle is associated to wisdom, specifically the consumption per hour,
i.e. a vehicle fuel consumption as a function of speed, distance, or type of engine.
Once wisdom is defined (e.g. 1.5 L/min), knowledge about the autonomy of the
system can be calculated. Wisdom will be updated and improved depending on
experience, or modified if it does not agree with expected values.

In Table 4, an example of quality evaluation on four contexts, applying the
proposed model, is shown. Only the most representative quality elements are
indicated to evaluate DQV and IQV . Data quality measures include: Erroneous
data marked as true when the CRC (code of cyclic redundancy) provided by
the stream cannot be verified; incompleteness detects lost messages using the ID
sequence and indicates how many packages are lost. At the information quality
level measures take into account: Source precision calculated with the parameters
indicated on the data-sheet of the sensor; integrity as the percentage of the
sub-system that works properly; uniqueness as a Boolean that indicates if the
information is unique for an instant of time; real precision identified as the noise
filtered from the signal; timeliness as the difference between the expected and the
real time of arrival of the information; format as a Boolean that evaluates if the
format is valid; and coherence as the difference between a theoretical behavior
of the system calculated knowing the state of pumps and the observed one.
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Table 4. Quality evaluation for ultra-sounder

Anomaly DQV {ierr, iinc} IQV

Intrinsic
{idsp, iditg, iduni}

Contextual
{cdrp, cdtim}

Extrinsic
{edfor, edcoh}

Normal {false, 0} {4, 100, true} {5, 2} {true, 2}
Foreign objects {false, 0} {3, 100, true} {35, 1} {true, 2}
DoS attack {false, 11} {3, 100, true} {3, 120} {true, 5}
Leak {false, 0} {1, 100, true} {15, 0} {true, 1/35}

An example of a normal behavior is described in the first row: DQV =
{ierr = false, iinc = 0 messages}; IQV = {intrinsic {idsp = 4 u., iditg = 100%,
iduni = true}, contextual {cdrp = 5 u., cdtim = 2 ms}, extrinsic {edfor = true,
edcoh = 2 u.}}, where ‘u.’ are the units used by the system, that is, 1 of the
10000 uniformed steps of a full tank. Examples of three different anomalies that
deteriorate some dimensions of quality are analyzed in the next three rows.
When foreign objects are floating on the liquid, measure precision worsens sig-
nificantly, e.g. contextual IQV = {cdrp = 35 u.}. A DoS (Denial-of-Service)
network attack produces the lost of network packages, affecting data incomplete-
ness and increasing information timeliness, e.g. DQV = {iinc = 11 messages}
and IQV = {cdtim = 120 ms}. Finally, when a leak is produced the measure of
coherence decreases, e.g. IQV = {cdcoh = 1/35 u.−1}.

Knowledge quality can be defined making use of - {ferr, frel} - as: KQV =
{2, 2}, KQV = {4, 4}, KQV = {3, 3}, and KQV = {3, 3}, for the indicated
cases respectively, adding relevant factors to previously obtained IQV , as defined
in Eq. (6). Completeness is not considered in this case because knowledge is
created from a unique source. Defined levels - from 1 to 5 - based on the tank
capacity, represent error cost and relevancy. In this particular case, errors’ cost
make knowledge more relevant and directly related. On the other hand, WQV is
static when the system is functioning e.g. WQV = {aexp, acom} = {38, 1} - i.e.
based on 38 previous cases, only considering the liquid level. Potential costs of
wrong decisions resulting from ignoring quality evaluations could be, for instance:
blocked pipes if foreign objects are not removed; significant amount of missing
values that are not updated if the DoS attack is not detected; and wrong system
autonomy previsions if a leak is not fixed.

4 Discussion and Conclusion

Quality evaluation in cyber-physical systems appears as an alternative to moni-
tor systems’ operations and adjust if necessary the behavior of sub-systems, as
well as to reduce potential risks and costs resulting from wrong decisions. We
have proposed a methodology to completely evaluate data, information, knowl-
edge, and wisdom quality. Following an analysis of existing quality measurements
in other domains, the proposed approach identifies the most suitable elements
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of quality evaluation for cyber-physical systems. Defined knowledge factors and
wisdom aspects for quality measurement, not previously conceptualized in the
literature, enhance the evaluation to take into account complementary qual-
ity evaluation elements. All imperfections, dimensions, factors, and aspects, do
not need to be systematically examined to evaluate the quality of a networked
cyber-system. Since each element can be separately qualified, dynamic quality
evaluations are applied according to the available elements in a given context.

A schematic simplified application of the proposed approach was presented,
taking the case study of a cyber-physical system sensor network. It illustrates
how the defined quality evaluation components are analyzed. Despite the appar-
ent simplicity of this experiment, obtained results reveal the complexity of eval-
uating the complete system quality from data to wisdom, at normal and three
different possible functioning stages. Resulting measures are multidimensional,
heterogeneous, and variable. We also observe the need to encode considerable
prior knowledge to facilitate system quality assessment. On the other hand, the
interest of global quality measures to monitor cyber-physical systems remains
unknown. It is unclear what a single qualification obtained from multiple het-
erogeneous elements could mean to a decision maker. Further work will consist
on extending the proposed approach to other cyber-systems in operational con-
ditions.
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