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Abstract. Speech recognition in smart home systems has become popu-
lar in both, research and consumer areas. This paper introduces an inno-
vative concept for a modular, customizable, and voice-controlled smart
home system. The system combines the advantages of distributed and
centralized processing to enable a secure as well as highly modular plat-
form and allows to add existing non-smart components retrospectively
into the smart environment. To interact with the system in the most com-
fortable way - and in particular without additional devices like smart-
phones - voice-controlling was added as the means of choice. The task of
speech recognition is partitioned into decentral Wake-Up-Word (WUW)
recognition and central continuous speech recognition to enable flexibil-
ity while maintaining security. This is achieved utilizing a novel WUW
algorithm suitable to be executed on small microcontrollers which uses
Mel Frequency Cepstral Coefficients as well as Dynamic Time Warping.
A high rejection rate up to 99.93% was achieved, justifying the use of
the algorithm as a voice trigger in the developed smart home system.

Keywords: Smart home - Retrospective home - Offline speech recogni-
tion - Wake-up-word recognition - Distributed speech processing

1 Introduction

Smart homes in general are habitats that provide their owners comfort, efficiency,
security and convenience even if they are not at home. The provided support
is achieved by incorporating common devices into smart objects to be able to
control several features of the home like the lighting or heating automatically
and more intelligent. Even though, this concept as well as corresponding open
and commercial solutions are already available ([1-3] and many more), only
minor households have adopted to this hype yet. According to [4], only 14% of
all households in Germany for instance used at least one smart home component
in 2014, leaving 86% of households not using any type of smart components.
As reported, the reason for the actual quite low acceptance of smart homes is
the missing compatibility between several providers of smart components as well
as a high effort required to install these systems. Furthermore, a (new) smart
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home solution requires the purchase of equipment most people typically already
own and which is still working. As an example, most aging HiFi systems or
televisions can not be controlled with a smartphone or by voice. However, this is
not a sufficient reason for most people to buy new systems. It should be possible
to retrospectively update the existing systems at low cost to interact as smart
components within the smart home system.

Another apprehension related to smart home systems is security. People are
afraid that using these systems might help other people to spy on them. Since the
own home is a hideaway from the outside world, it should not be vulnerable to
any kind of attack. Therefore, smart home systems should be highly secure and
should not allow, for example, that the neighbour could turn off or on devices
accidentally or intentionally.

An additional issue of existing smart home concepts is the lack of user-
friendliness and ease of use. These systems often require a lot of maintenance
and are either too complex or do not offer sufficient adjustment options. To con-
trol these systems, most providers offer smartphone or web apps. Indeed, the use
of smartphones simplifies the tasks of changing settings and controlling several
devices. But this simplification is restricted to situations where a person already
holds the smartphone in his or her hand. To increase the ease of use, an inter-
face should be used which works everywhere in the house and is carried around by
everyone all the time. Thus, the perfect interface is voice. To switch on the light, a
user could simply express the command “House, turn on the light”. Another bene-
fit of using voice commands is that they can be personalized easily. As an example,
the light could be also turned on by the command “House, it’s too dark”.

The idea of using speech as an input technique for smart home systems is not
novel. In [5] a remote speech interaction system to control entertainment devices
using beam-forming and speaker-verification techniques has been proposed. More
recently, [3] implemented a smart home system using contextual information
and the human speech. However, it is not pointed out how the microphone
data is acquired and how their systems can be expanded to a multi-room setup.
Commercial systems like Amazon’s Echo [7] or the just announced Google Home
[6] exist as well. However, the speech interaction is limited to the room in which
the system is installed. Furthermore, these devices are continuously listening
for fixed, not personalizable WUWs like “Aleza” or “Ok Google” and require
a connection to external servers for continuous speech processing. This implies
that a device connected to the internet is always listening regardless of whether a
person in the house is speaking towards the system or privately communicating.
Due to the “always online state”, these systems are of high risk for the leakage of
personal information. Regarding a more secure system, it should be guaranteed
that voice data is processed completely offline.

In order to approach the stated issues of existing smart home solutions, the
1House smart home system was developed which is highly customizable, user-
friendly and handles sensitive voice data as secure as possible by distributing
the task of Wake-Up-Word spotting and continuous speech recognition. Com-
pared to e.g. approaches from Amazon and Google, the system presented here
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can be used totally offline, avoiding in particular the “always online state” dis-
cussed before. To introduce the iHouse system in more detail, the remainder
of this paper is structured as follows: In Sect.2 an overview of the developed
smart home system is given. The developed hardware and how existing devices
are controlled (by means of some examples) is explained in Sect. 3. More details
about the implementation of the software is depicted in Sect.4, in which the
server application is presented. Details and test results of the novel WUW spot-
ting algorithm are further explained in Sect. 5. Concluding remarks and future
work are provided in Sect. 6.

2 iHouse System Overview

The iHouse smart home system was developed to provide its users support and
convenience during everyday’s tasks. The i in the name of the system refers to
the fact that the provided support is done as ’intelligent’ as possible. Therefore,
several devices like the lighting, heating or the television can be controlled and
sensor data such as the energy consumption of a device or the room temperature
can be monitored in a convenient way. Speech recognition is build on top, so that
voice commands can be expressed to trigger certain actions like switching on the
ceiling light or getting access to several information like the current temperature
in a certain room. An overview of the system’s workflow is shown in Fig. 1. If
the user expresses a custom voice trigger like “Ok House”, the system responds
with a certain sound indicating that it is now continuously listening for com-
mands. Each utterance or sentence spoken afterwards, like “Lights on” or “Room
temperature”, will be treated as a command. If such a command is recognized,
the system will either execute an action or answer accordingly. Furthermore, the
system automatically adds context information by triggering certain sensor mea-
surements or by making use of past events and spatial information. The spatial
information is obtained by evaluating in which room the command was triggered.
Thus, one does not need to point out, for example, which specific light should
be turned on. Furthermore, rules or scenarios can be set, so that for example all
lights will be switched off automatically at midnight.

light on in kitchen
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light 1 switch
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Fig. 1. Working principle of the iHouse smart home system for the example of switching
on a light in the kitchen.

>

Several sensors can be added dynamically to the system to get information
about the current temperature, humidity and brightness level. The system is
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not limited to switching lights on and off, since other modules can be added as
well. For example, one might add thermostats to the system so that the heating
can be controlled as well or metering devices to be able to record and monitor
the energy consumption of certain devices like the refrigerator. Each of these
modules can be added, removed or replaced dynamically in order to provide a
highly customizable setup comprising both decentral and central components.

2.1 Central vs. Decentral Processing

A smart home environment itself is distributed by its nature. It consists of several
spatially separated places, each of them with multiple sensors and actuators like
temperature sensors or thermostats. To connect with these devices, a centralized
approach with a server application was selected. The centralized processing and
execution simplifies dependent tasks and the interconnection between different
rooms as well as the maintenance of the entire system. The server therefore acts
as the central brain of the smart home with knowledge of past and present sensor
data and user events. This information is then used to select the most suitable
action to support the user. As an interface to the system, a server application by
itself is not appropriate since it lacks fast remote access and portability. For this
reason, decentral access to the system is provided by either using a smartphone
application or voice. However, the arrangement of a home with its multiple dis-
tributed rooms hampers the use of speech recognition, since either the user must
be equipped with a microphone or every room. If the user is equipped with a
microphone, a device with a portable power supply is needed which - like a
smartphone - lacks portability and, thus, also accessibility during recharging. If,
on the other hand, every room is equipped with a microphone, a portable power
supply would not be essential since power sockets are typically available in every
room. The decentralization of these devices into multiple rooms leads to different
possible approaches. Each microphone module can either independently evalu-
ate and execute a given voice command by itself or has to stream the speech
signal to the centralized server which further recognizes the command. Each of
the two methods has its benefits and drawbacks. If the devices would recog-
nize commands by their own, each of them needs to have enough computational
power to perform speech recognition on a large vocabulary. However, devices
with sufficient computational power are typically pretty expensive. The central-
ized approach requires only one device with enough power to perform speech
recognition which is the server. But this approach also requires that the voice
data is transmitted to this server over a potential insecure wireless channel. Addi-
tionally, receiving and processing voice data from multiple microphone modules
is a high overhead even for high-end devices. For the stated reasons, a combi-
nation of both approaches is used by distributing the task of voice controlling
to decentral WUW recognition on microphone modules and central command
detection on a server. The microphone modules recognize any WUW recorded
in advance. This recognition is done directly on the module without streaming
any audio data to a server. Only if a WUW is recognized, audio data is con-
tinuously streamed to the server application. This ensures, that the potentially
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insecure wireless channel for streaming is only used if the user wants to express
a command and, thus, is aware of it. To minimize eavesdropping, audio data
may also be encrypted before it is sent to the server application. Additionally,
the outsourcing of the WUW detection to the microphone modules reduces the
overhead for the receiving and processing of audio data on the server. Moreover,
the microphone modules have to compute less complex speech recognition tasks
which reduces the requirements for their hardware.

3 Hardware Components

The main components of the system are the microphone modules placed in every
room, the receiver station attached to the server and the server application. The
microphone modules serve to recognize spoken WUWSs and transmit the speech
signals spoken afterwards to the receiver station. The receiver station handles the
incoming speech data as well as the transmission of audio back to a certain micro-
phone module for audio feedback. The server application handles the recognition
of voice commands and executes them. The overall data flow of the audio data
between a microphone module and the server is sketched in Fig. 2.
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Fig.2. An overview of the audio data flow between microphone module and server
application. The most important hardware components and their connection are shown.

An ARM Cortex Mj microcontroller is used as the main processing unit
for the microphone modules and the receiver station since it offers just enough
computational power to sample and process the audio data. Moreover, it features
a build in Analog-to-Digital-Converter, a Digital-to-Analog-Converter, and an
SPI-bus. SPI is needed for communication with the wireless interface which is a
nRF24L01 from Nordic Semiconductor. To be compatible to common PCs, the
audio data connection between the receiver station and the server application
is achieved over the standard analog soundcard’s line in and line out plugs.
Furthermore, a USB connection is required for communicating with the server
application.

As mentioned, the retrospective use of existing systems in the home like the
television or lighting is preferred by most people instead of buying new devices.
Therefore, additional modules are used to update these systems so that they can
interact as smart components with the iHouse smart home system. To switch
and meter lights or generic devices with a power plug, off-the-shelf switchable
sockets are used, which communicate via 433 MHz. Existing infrared-light based
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systems are controlled with a self-build module featuring an IR-receiver to record
commands and an IR-sender to control systems like the TV. The overall con-
nections between the main components and some additional modules is shown
in Fig. 3.
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Fig. 3. Schematic overview of the connection of several hardware components in the
iHouse smart home system.

4 Server Application

The server application is the centerpiece of the entire system. Commands are
extracted from the voice stream, data of all sensors is collected and actuators
are controlled. A graphic user interface makes it possible to add, remove and
setup modules as well as to control them. In general, each device has a name, a
picture and a device type. While the name and the picture are only for identifi-
cation and further highlighting, the device type decides which kind of sub-device
it is and what smart object it actually represents and, thus, what actions can
be performed and what states can be queried. Furthermore, different graphic
user interfaces for controlling the device or changing its settings are displayed
depending on the device type. One example for such a sub-device is a switchable
socket. The available actions for this sub-device are switching on and switch-
ing off the socket, while the available state is whether the socket is currently
turned on or off. The sub-device stores ID information of the physical device
in order to establish a physical connection. Such a connection is done either
using T'CP or a more rudimentary protocols via e.g. 433 MHz depending on the
smart object. Data collection is achieved using a hierarchic star network struc-
ture with the server as the main data sink. If data can not be exchanged with the
target platform directly because specialized communication hardware is needed,
communication-bridge modules are added to the network which represent the
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data sink for all devices communicating with this specialized hardware. These
modules further send the data to the server application over standardized pro-
tocols such as TCP. As an example, a TCP to infrared-light-bridge is used to be
able to control existing television or HiFi-systems.

Voice commands are build on top and can be customized to the personal
needs of the user. One can choose the command that needs to be spoken, the
corresponding action as well as a text that is read out after the command is
executed. Every command has a handler that is executed if the command is
recognized. This handler is either a simple function that reads a response text
with certain information like the temperature in a room or a more complex
function that performs actions of certain devices like turning on the heating.

The graphic user interface of the server application allows to control the
smart objects directly within the application. The main setup of the server,
running the application is shown in Fig. 4.

Fig. 4. The iHouse smart home server application running on a PC connected to the
receiver module over USB, Line in and Line out. A microphone module is shown on
the right side. On the left side of the app, the room of interest can be selected. In the
center, all available devices in this selected room are shown and can be controlled.

Voice controlling can be activated by either speaking the WUW in a room
equipped with a microphone or by triggering a specific keystroke at the desk-
top computer. The application will automatically display a view showing all
recognized commands as well as textual and graphical answers.

In order to add time or action based rules to a device, information and
sensor data of other devices need to be accessed, too. If, for example, the heating
should automatically adapt to the temperature in the room or to the time of
day, those information must be accessible to the heating object. This information
propagation is achieved by a publish and subscribe model. If a new temperature
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sensor reading is available, this data is published by the sensor object. Other
objects interested in the room temperature can now subscribe this value and get
notified on each new reading. The server application can be seen as a modular
platform that can be further optimized and extended according to the preferences
of a particular user.

5 The Wake-Up-Word Spotting Algorithm

To enable voice controlling from a specific room of the house, a microphone mod-
ule needs to be installed as described in Sect. 3. After detecting a pre-recorded
WUW, speech data is transmitted to the server for continuous command detec-
tion. The detection of the WUW is, however, task of the microphone module
itself. To reduce the cost and size of these modules, only inexpensive microcon-
trollers with limited resources are used, which provide only a small amount of
computational power and internal memory (see Sect. 3). Therefore, they are not
capable of handling the high load of traditional speech recognition techniques.
Optimized algorithms to detect keywords on low-level microcontrollers are pro-
posed in literature but are not suitable for real-time applications. In [8] Linear
Prediction Coefficients with Hidden Markov Models are implemented on an 8
bit, 16 MHz microcontroller resulting in an average recognition time of 15 to
17s. Another approach using Linear Prediction Cepstral Coefficients on an 8 bit
MCU, clocked at 40 MHz with a specialized Dynamic Time Warping (DTW)
algorithm is used in [9]. However, the authors do not give any hint whether their
system can be applied to real-time applications or not.

For small vocabulary speech recognition systems such as keyword spotting
systems, the template matching approach is widely used ([9,10]). The specially
developed WUW spotting algorithm adopts this approach but makes it suitable
for real-time applications on low-level microcontrollers. An overview of the real-
ized approach is shown in Fig. 5, in which additional as well as optimized stages
(compared to the traditional flow) are highlighted in orange.

feature '
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Fig.5. An overview of the proposed WUW-spotting algorithm. Blocks in orange are
added to the standard template matching pipeline while blocks in light orange show
highly optimized implementations to maintain real-time behavior for low-level systems.
(Color figure online)

Speech Framing

To evaluate the dynamic process speech, the simplifying assumption is made
that speech is statistically stationary on short time scales. Therefore, features



76 B. Volker et al.

are extracted and evaluated on a frame by frame basis over a specific time
interval called window. For the algorithm, a frame length of 10 ms with a window
length of 20ms and a sampling frequency of 16 kHz is used. Discussion about
proper frame and window durations for speech processing can be found in [11].
A WUW Context Detector is developed to distinguish speech directed towards
the system from speech that is not. Humans usually get the attention of other
people by hyper-articulating their names or by using interjections like “excuse
me”. This is often coherent with a preceding and succeeding silence to highlight
the spoken utterance even more. By applying this human behaviour to a more
general model, the WUW context is defined as a preceding voiceless segment
followed by a voiced segment in the length of a stored WUW succeeded by an
additional voiceless segment. The WUW Context Detector uses a Voice Activity
Detector (VAD) [12] to decide whether voice is present or not and thresholds to
evaluate the length of each segment.

The feature extraction is optimized for the calculation of Mel Frequency Cep-
stral Coefficients (MFCCs) with 26 filter banks linear distributed in the mel-scale
between 100 Hz and 8000 Hz to model the speaker and the spoken WUW. MFCC
features have successfully been applied to speech recognition tasks since their
introduction in the 70’s [14]. An overview of the steps done to compute the
MFCCs is shown in Fig. 6.
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Fig. 6. An overview of the extraction of Mel Frequency Cepstral Coefficients.

Since the major goal is to enable the execution of the algorithm on low-level
platforms, the MFCC calculation is optimized as follows. The Hamming window
and the independent cosine values used for the Discrete Cosine Transformation
calculation are precomputed and stored in a LookUp Table. Furthermore, only
the first half of the Hamming window is stored due to its symmetry. An efficient
Fast Fourier Transformation for power-of-2 lengths (Npppr = 512) is used and
the mel filter banks are optimized by only calculating the relevant values for each
triangular filter. In the WUW matching block, a sequence of extracted feature
vectors is tested consecutively against each stored template. If strong deviation
is found between the length of the template and the test sequence, a mismatch is
assumed and further matching is canceled. This reduces the computational com-
plexity and improves the systems response time. If no strong deviation is found,
further analysis using an optimized DTW algorithm with a Fuclidean Distance
measure is applied to both sequences. DTW has successfully been applied to
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speech recognition problems ([8,13]). However, its computational complexity is
O(n-m), with n and m being the lengths of two sequences to compare. Depend-
ing on the frame duration and the length of the WUW, the extracted sequence
of feature vectors can get quite large resulting in a huge matrix that needs to be
explored. This exploration is not only computational complex for an embedded
device but might also become a memory problem depending on the underly-
ing hardware platform. In order to solve this problem the Sakoe-Chiba band [14]
with distance r is used to reduce the search space. The complexity is even further
reduced by using a sub-word matching technique: Each feature vector sequence is
divided into k subsequences of equal length. The corresponding subsequences of
the test and template sequence are successively matched with DTW and the dis-
tance of each match is stored. The total distance is finally estimated by the mean
of the distances of all subsequences. Therefore, the complexity is decreased to

n-r+m-r—k-r>— O(r-max(n,m)). (1)

If the total distance of a test sequence drops below an empirically defined thresh-
old, the sequence and, thus, the utterance said, is classified as a WUW. If the
system is in the learning state, an Entropy Test ensures that the template record-
ing is suitable to be used as a WUW by requiring its length to be greater 0.2s and
smaller 2s and the environment in which it is recorded to be almost noise-free.

With the performed optimizations in the template matching and feature
extraction pipeline, the average recognition time is 300 ms for a single stored
WUW of 1.3s length. The recognition time scales according to Eq.1 with the
length of the WUW and linear with the total number of stored WUWs.

5.1 Experimental Setup and Results

To evaluate the proposed system, a database of 11 different speakers - two female
and nine male - and two different scenarios (WUW and continuous speech) was
recorded for three different distances (1, 3 and 5m) between the microphone
and speaker. Two WUWs were chosen by each subject individually and were
recorded in a noiseless environment at a distance of 1m to the microphone. In
the WUW scenario several utterances are spoken successively with a 1s silence
interval between each utterance to ensures that the WUW Context Detector
assumes it to be spoken in the WUW context during evaluation. Both WUWs
occur at least three times in this scenario. The purpose of this scenario is to
evaluate the performance of the feature extraction and matching block of the
proposed algorithm. In the continuous speech scenario the subjects were reading
texts from a book to simulate a regular conversation. The purpose of this scenario
is to test the WUW Context Detector which should reject all speech not spoken
in a WUW context. The performance of the system was measured in terms of
correct acceptance (CA) and correct rejection (CR) rates [12], since WUW or
keyword spotting systems need a measure of rejection. Rejection is the ability
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of the system to detect and reject Out Of Vocabulary utterances. CA and CR
rates can be obtained by

TP CR_#WOI‘dS—FP

Azi =
¢ TP+ FN’ # words

(2)
where TP is the number of true positives, F'IN is the number of false negatives
and F'P is the number of false positives. As Table 1 shows, the CR rate is as high
as 99.69% for a CA rate of 100% in the speech scenario. In the WUW scenario,
however, the CR rate drops to 89.66%. Depending on the application of the
system, a large CR rate is more important than a high CA rate. Therefore, the
system was re-evaluated by omitting the WUW with the largest distance measure
to the corresponding template recording. In other words, the worst pronunciation
of each WUW was deleted for every person. This leads to an overall CA rate
of 67.86%, meaning that approximately two out of three WUW would still be
recognized correctly. This reduction causes that the CR rate increases to 99.93%
in the speech scenario and to 96.91% in the WUW scenario. 99.93% is equivalent
to one erroneously trigger around 1400 words.

Table 1. System performance depending on the scenario evaluated for two CA rates.

Scenario | # Words | # WUW | CA rate | # TP | # FP | # TN | # FN | CR rate
Speech | 4149 0 100% 0 13 4136 0 99.69%
67.86% 0 3 4146 0 99.93%
WUW 1392 282 100% 282 144 1248 0 89.66%
67.86% | 192 43 1067 |90 96.91%
Total 5541 282 100% 282 157 5102 0 97.17%
67.86% | 192 46 5213 90 99.17%

6 Conclusion

This paper proposes a modular and expandable smart home solution, which is
user-friendly in installation and usage. Additionally, it is secure by processing
all data offline. The system consists of external microphones and a central server
application which interacts with different smart components like light switches,
the heating, or the TV. To improve the ease of use, voice controlling was added to
the smart home system as the main interface. This enables the interaction with
the system through voice commands that, unlike existing systems, are processed
completely offline and can be customized to the personal needs of the user. To be
able to interact with this system from every room of the house, microphone mod-
ules were designed which can be installed easily into existing households since
all communication to the server is done wireless. To separate speech directed
to the system from speech not directed to the system, a novel WUW algorithm
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was developed which recognizes predefined WUWSs spoken in an alerting context
of getting attention. Thus, all voice commands directed to the system must be
spoken with a leading WUW like “Hey House [pause] light on!”. Speech data is
only transmitted to the server if the leading WUW is recognized by the embed-
ded platform. The WUW algorithm was improved in terms of computational
complexity to enable the execution on embedded platforms with less compu-
tational power. An evaluation was done on a speech database of 11 different
speakers. The algorithm achieved an overall correct rejection ratio of 99.17% for
a correct acceptance rate of 67.86%. The rejection of speech not expressed in
the WUW context is up to 99.93%. Future work for the smart home system will
focus on extending its scope and smartness. This will be achieved by utilizing
the implemented publish and subscribe model to make the system even more
context aware and, thus, to provide additional convenience and aid for the user.
Nevertheless, first feedback obtained from test users and other participants indi-
cates that voice controlling is a key feature and will enhance smart homes to
bring them into more households any time soon.
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