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Abstract. Energy-efficient computing has increasingly come into focus of
research and industry over the last decade. Ultra-low-power architectures are a
requirement for distributed sensing, wearable electronics, Internet of Things and
consumer electronics. In this paper, we present a dual-mode platform that includes
an ultra-low power Cortex Arm M4 microcontroller coupled with a highly energy
efficient multi-core parallel processor. The platform is designed to maximize the
energy efficiency in sensors applications by exploiting the Cortex Arm M4 to
achieve ultra-low power processing and power management, and enables the
multi-core processor to provide additional computational power for near-sensor
data centric processing (i.e. accelerating Convolutional Neural Networks for
image classification) increasing energy efficiency. The proposed platform
enhances the application scenarios where on-board processing (i.e. without
streaming out the sensor data) enables intensive computation to extract complex
features. The platform is geared towards applications with limited energy budget,
as for example in mobile or wearable scenarios where the devices are supplied
by a battery. Experimental results confirm the energy efficiency of the platform,
demonstrate the low power consumption, and the benefits of combining the two
processing engines. Compared to a pure microcontroller platform we provide a
boost of 80× in terms of computational power when running general purpose code
and a boost of 560× when performing convolutions. Within a reasonable power
budged of 20 mW compatible to battery-operated scenarios the system can
perform 345 MOPS of general purpose code or 1.5 GOPS of convolutions.

Keywords: Low power design · Sensors platform · Energy efficiency · Power
management · Multi-core processor

1 Introduction

Due to the vast improvements in sensors technology, digital processors, device minia‐
turization and thanks to the availability of ubiquitous wireless connectivity, intelligent
sensor devices are becoming increasingly smart and this leads to always-on connected
products. The Internet of Things (IoT) paradigm, promises to have trillions of those
sensors devices in nearly future deployed around the world [1]. Partially this revolution
has already started, and today sensors devices are gaining immense popularity, with
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people increasingly surrounded by “smart” objects, from phones to clothing, from
glasses to watches, finding applications from home automation to healthcare [2].

The IoT is also creating formidable research challenges. In particular, trillions of
sensors will produce huge amounts of data that need to be sent and stored somewhere.
Moreover, the data by themselves do not provide value unless we can turn them into
actionable, contextualized information. In fact, to produce useful information the data
needs to be processed by some intelligent system somewhere along the line. Big-data
mining techniques allow us to gain new insights by batch-processing and off-line anal‐
ysis. Machine learning technologies are used with great success in many application
areas, solving real-world problems in entertainment systems, robotics, health care, and
surveillance [1]. More and more researchers are tackling classification and decision-
making problems with the help of brain-inspired algorithms, featuring many stages of
feature extractors and classifiers with lots of parameters that are optimized using the
unprecedented wealth of training data that is currently available. However, machine
learning requires complex software and significant computational power to be really
effective [4, 5].

Today there are many IoT applications that use a centralized approach where data
processing is done far from the sensor. In these applications, data is sent directly to a
remote host capable of running complex and power hungry algorithms. This is, for
example, the approach used by the cloud computing adopted by the biggest service
companies as Google and Facebook and millions of users [6]. It is clear that, as the
number of data generating remote sensors increase steadily, the communication infra‐
structure will be not sufficient to deal with the enormous amounts of data being generated
all over the planet. For a truly scalable and robust IoT infrastructure to succeed, in-situ,
close to the sensor and distributed real-time feature extraction, analysis, classification,
and local decision-making are essential [7].

In recent years, there have been many research efforts to design new processors to
match the requirements of computational resources required by in-situ signal processing
with low power consumption needed for operating long-lasting sensors devices [7–10].
There are two approaches to improve the performance of ultra-low-power processors
that have shown promise. The first one is to exploit parallelism as much as possible.
Parallel architectures for near-threshold operation, based on multi-core clusters, have
been explored in recent years with different application workloads for an implementation
in a 90 nm technology [17]. A second very prolific research area is exploiting low-power
fixed-function hardware accelerators coupled with programmable parallel processors to
retain flexibility while improving energy efficiency for specific workloads [11, 12]. Such
near-threshold parallel heterogeneous computing approaches hold great promise.

In this work, we present a complete hardware platform that includes an heteroge‐
neous multi-core System on Chip (SoC), capable of operating on a wide voltage range,
paired with an ultra-low power ARM Cortex M4 micro controller that are able to inter‐
face to a wide set of sensors. The platform is designed to achieve the best energy effi‐
ciency for a wide range of applications by combining the ultra-low power of the highly
integrated ARM microcontroller and the powerful multicore SoC. The ARM M4, which
is designed for battery powered applications such as wearable electronics, is used to
configure the SoC processor, provides the power management of the board and can also
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process preliminary sensor data. In this way, the SoC processor is activated by the ARM
M4 only when it has not enough computational resources (i.e. processing convolutional
neural network for video processing) or in cases when it is more energy efficient to
process the data on the SoC (i.e. if the SoC can accelerate the algorithm by a factor of
10× or more). The platform has been designed as a generic testbed and supports several
peripherals where sensors can be attached.

The rest of the paper is organized as follows: Sect. 2 presents related work, Sect. 3
describes the SoC ultra low-power multi-core parallel platform (PULP), Sect. 4 illus‐
trates the multi-processor platform that has been designed and developed, Sect. 5 shows
the experimental results and Sect. 6 concludes the paper.

2 Related Works

Research on intelligent sensors systems has been very prolific in recent years with a
variety of solutions in a wide range of application scenarios [1, 3]. There are many
examples of implemented and deployed wearable devices that attempt to exploit intel‐
ligent sensing and wireless communication to monitor human activities [13–15]. The
main challenges of IoT devices design are to prolong the operating lifetime and to
enhance usability, maintenance, and mobility, while keeping a small and unobtrusive
form factor [2]. Many IoT devices such as for example mobile and wearable sensing
systems have to provide continuous data monitoring, acquisition, processing, and clas‐
sification. Supporting such continuous operation using only ultra-small batteries poses
unique challenges in energy efficiency [16].

As sensor data processing based on machine learning needs computational perform‐
ance, most IoT applications today on the market have focused on using smartphones as
a centralized hub that provides a powerful computing platform and allows a network of
smaller sensors to be connected. Pushing on energy efficiency, state-of-the-art commer‐
cial ultra-low power processors are trying to exploit novel solutions to extract as much
as possible out of silicon. A novel approach to further improve the energy efficiency is
near-threshold computing, which exploits the fact that CMOS technology is most effi‐
cient when operated near the device voltage threshold [19]. In particular in [20–22] the
authors show examples of near-threshold ultra-low power microcontrollers, with the
latter also exploiting SIMD parallelism to improve performance. There are microcon‐
trollers that can embed custom hardware accelerators [23] as well to improve the
computational performance. However, such approaches limit the flexibility of the solu‐
tion affecting the cost and scale economy. In this paper, we show the potential of
combining an ARM Cortex M4 with a state-of-the-art multi-core accelerator in a single
platform to maximize the energy efficiency of a wide range of sensor applications
providing extraordinary computational power.

3 Pulp Overview

The main aim of this work is to build a multi-modal and multi-processor sensing platform
that embeds an ultra-low-power parallel-processor called PULP (Parallel Ultra Low
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Power Platform) [17]. The PULP processor has been designed specifically to take
advantage of the energy-efficient near-threshold regime. The degradation of perform‐
ance, caused by the aggressive voltage scaling, is recovered by increasing the paral‐
lelism. The PULP platform is built upon a cluster of tightly coupled cores. To avoid the
huge overhead of a cache coherent system, the cores do not have private data caches but
share data through a Tightly Coupled Data Memory (TCDM). The TCDM is composed
of several single ported memory cuts connected to the processors with a non-blocking
logarithmic interconnect. The interconnect grants single cycle access when there is no
contention and, by using appropriate banking factors and interleaving, on average the
access contention remains below 10% even for load/store intensive applications. The
Instruction-Cache (I-Cache) is shared among all cores and is implemented with Standard
Cell Memory (SCM) cuts to optimize the energy of instruction fetching. Data transfer
between L1 TCDM and the main SoC memory is done by a system DMA capable of
queuing multiple transfers with ultra-low latency programming interface dedicated to
each core. The system is completely event based: the cores, when waiting for synchro‐
nization events or for I/O, are forced in an idle state by a dedicated hardware Event Unit.
The event unit performs the gating of the cores and provides hardware support for fast
core synchronization (Fig. 1).

Fig. 1. MiaWallace architectural diagram

The SoC named MiaWallace in this work is an implementation of the PULP platform
in UMC 65 nm with the addition of a convolutional hardware accelerator. It has four
cores and features an L1 TCDM of 80 KB (64 KB SRAM and 16 KB SCM based), a
4 KB instruction cached based entirely on SCM, a 256 KB L2 memory and a full set of
peripherals. The cores are compliant with the OpenRISC ISA, with instruction set
extensions for DSP applications to improve performance [24].
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The dedicated Hardware Convolution Engine (HWCE) is directly connected to the L1
TCDM memory through the logarithmic interconnect just like processor cores. It uses
three dedicated ports toward the shared memory to sustain the full bandwidth required by
its engine. Its core is made of two sum of products unit, each of which is capable of
performing a 5 × 5 convolution on 16 bits input data. Although it is optimized for 5 × 5
convolutions it can, with a little loss of performance perform convolutions of different
sizes allowing applications that use convolutions (such as convolutional neural networks)
to be processed efficiently [12].

The PULP includes two SPI (Serial Peripheral Interface) interfaces (one master and
one slave), I2C, I2S, GPIOs, a boot ROM and a JTAG interface suitable for testing
purposes. Both SPI interfaces can be configured in single mode or quad mode depending
on the required bandwidth, and they are suitable for interfacing the SoC with a large set
of off-chip components (non-volatile memories, voltage regulators, cameras, etc.).

PULP is able to operate in two different modes: slave mode or stand-alone mode.
When configured in slave mode, PULP behaves as a many-core accelerator of a
standard host processor (e.g. an ARM Cortex M4 low-power microcontroller). In this
configuration the host microcontroller is responsible for loading the application and the
data on to the PULP L2 memory through the SPI master interface. After this the micro‐
controller initiates and synchronizes the computation through dedicated memory
mapped signals (e.g. fetch enable) and GPIOs. When configured in stand-alone mode,
the boot code in the on-chip ROM is able to detect a flash memory on its SPI master
interface and, if present, will load the program to the L2 memory and starts the execution.

The SoC is divided in two voltage domains, one for the cluster and one for the
peripherals and L2 memories. The cluster works on a wide range of voltages starting as
low as 0.62 V while the minimum operating voltage of the peripheral domain is limited
by the L2, whose performance degrades severely below 0.8 V. Figure 2 shows the chip
micrograph and a table with the main features.

Fig. 2. Chip micrograph and main features
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4 Platform Architecture

Figure 3 shows the architectural block diagram of the implemented platform. The
designed multi-processor platform features an ARM Cortex M4 ultra low-power micro‐
controller as well as the Mia Wallace SoC as the main architectural blocks. The two
devices are interconnected by various interfaces. In particular, PULP’s slave SPI inter‐
face is driven by the microcontroller to have access to the entire memory space of the
PULP system. With this interface, the microcontroller can assume the role of a host
controller using PULP as an accelerator. Additionally, a shared I2C Bus and GPIO
connections between the two devices allow for user-programmable signaling or data
exchange.

Fig. 3. Sytem architecture

Both PULP and the microcontroller are connected to a set of LEDs and push buttons
to allow for basic user interaction. A flash memory for loading PULP programs in stand-
alone mode is part of the platform. Although in the current version of the platform we
didn’t embed any sensors, all interfaces of both devices are accessible via pin headers
and connectors so that a multitude of sensors or other peripheral devices can be attached
to the system. Thus, serial interfaces such as I2C, UART, SPI, QUAD-SPI, I2S and
GPIOs are all available for sensors board extension.

As the platform is mainly targeting mobile and wearable applications, to ensure
simplicity and portability, the platform is powered from a single power source such as
a laboratory power supply or a single Li-Po battery cell. A set of DC-DC converters are
a part of the platform in order to provide the necessary supply voltages for PULP, the
microcontroller and peripherals to be attached to the system.

All the supplies can be controlled by both the microcontroller and the MiaWallace
SoC, however to achieve ultra-low power consumption the microcontroller can
completely shut down MiaWallace and ensure correct wakeup after deep sleep modes.
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To improve the energy efficiency of the platform and provide flexibility, different power
supplies have been optimized for different current ranges and average on times.

Table 1 shows the main features of the power converters we have evaluated. High
Efficiency Power Converter (HEPCO) has been designed to extend the voltage range
of commercially available DC/DC components while keeping the maximum possible
efficiency.

Table 1. Efficiency and Ripple for different DC/DC converters

Converter 1.2 V 0.6 V
0.1 mA 10 mA 0.1 mA 10 mA
Eff (%) Rip (V) Eff Rip Eff Rip Eff Rip

TPS62080 PFM/PWM 40 0.4 80 0.2 73 0.2
TPS62080snooze mode 57 4.2 79 0.9 48 4.8 71 0.8
TPS62361B 30 0.9 84 0.5 23 2.4 78 0.8
HEPCO w/TPS62736 82 1.9 88 0.5 74 3.9 80 1.7
HEPCO w/TPS62737 76 3.2 79 2.9 63 9.2 68 8.0

For the cluster domain we choose the TPS62361B, which has an operating range
compatible with our requirements and it has a very fine tuning range to find the optimal
operating point for a given application. The minimum current of the cluster is above the
point for which this converter starts to lose efficiency. For the peripheral domain of the
MiaWallace we use the HEPCO implemented with the TPS62736 due to its high effi‐
ciency at lower currents.

The choice of the microcontroller was driven by the low power features available
and the flexibility on the power modes. After comparing various microcontrollers avail‐
able today on the market we choose the Ambiq Apollo MCU. The microcontroller
combines ultra-low-power sensor conversion electronics with a 32-bit ARM Cortex-
M4F processor. It also integrates 512 KB of flash memory, 64 KB of RAM and a Floating
Point Unit which is a big advantage compared to the other MCUs in the ultra-low power
world.

Other main components of the Apollo MCU include: 10 bit ADC with 8 channels,
temperature sensor, I2C/SPI interface, 50 GPIO, and one UART. Furthermore, the
Apollo MCU includes a set of timing peripherals based on Ambiq’s AM08XX and
AM18XX Real-Time Clock (RTC) families. The RTC, timers, and counters may be
driven by three different clock sources: a low frequency RC oscillator, a high frequency
RC oscillator, and a 32.768 kHz crystal (XTAL) oscillator. With its extremely low active
mode power of <40 μA/MHz, it is possible to perform complex sensor processing algo‐
rithms on the Apollo MCU. The Apollo MCU also includes a Power Management Unit
(PMU) that controls the transitions of the MCU between the following power modes:

Active mode: in this state, the processor M4F is switched on, all clocks are active
and instructions are being executed. The MCU will return to active mode during reset,
when an interrupt is received by the Nested Vectored Interrupt Controller or a Debug
Event is received.
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Sleep mode: during this mode, the M4F is powered up, the clocks (HCLK, FCLK)
are not active. The difference between this state and the Deep Sleep Mode is that the
M4F logic is still on and it can return to Active State rapidly on a wakeup event.

Deep Sleep mode: in this state, the M4F enters a State Retention Power Gating
(SRPG) where the main power is removed, but the registers in the MCU retain their
values. The clocks are not active, and the clock sources for HCLK and FCLK can be
deactivated. Table 2 shows measurements performed on the MCU during different
operating modes relevant for the project.

Table 2. Ambiq Apollo operating modes and current consumption

Scenario Power consumption
Deep sleep, RTC disabled 100 nA @ 2 V
Deep sleep, 8/64 KB ram block retention, RTC on 1 s,
incrementing one variable

125 nA @ 2 V

Deep sleep, 64/64 KB ram block retention, RTC on
1 s, incrementing one variable

435 nA @ 2 V

Normal sleep, RTC disabled, 8/64 KB ram block
retention

50 μA @ 2 V

Active mode, 64/64 KB ram retention 1.3 mA @ 2 V

5 Experimental Results

5.1 Experimental Setup

The platform has been designed and implemented on a small-outline PCB just
8.7 cm × 5.7 cm in size and is shown in Fig. 4. The whole platform can then be supplied
by a single battery.

Fig. 4. PCB photo

Before measurements take place, programs for PULP and the microcontroller are
loaded into PULP’s flash memory and the ARM’s onboard flash via the JTAG and SWD
debug ports, respectively. The platform is supplied by and measurements are then taken
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with the Keysight N6705B DC power analyzer. This approach allows for precise meas‐
urements of dissipated power in the individual components of the platform as well as
for the calculation of converter efficiencies.

5.2 Computational Performance

MiaWallace with its wide operating range and the availability of the HWCE enables
multiple working modes that could cover many applications typical of the IoT domain.
Detailed measurements of performances and power consumption of the SoC in stand-
alone mode have been performed using an Advantest SoCV93000 ASIC tester.
Figure 5a shows the maximum operating frequency for different voltage points over the
whole operating range, while Fig. 5b shows how the energy efficiency changes in the
same range. When the HWCE is on, we consider the power in different conditions
depending on the computation over communication ratio (CCR) which depends highly
on the topology of the CNN. The number of operation per second is assuming that the
cores can perform 1 instruction per cycle. This assumption is true for many DSP kernels
especially where the operands are smaller than 32 bits and the system can benefit from
the available vector support extensions.

Fig. 5. Performance and efficiency of the SoC for different operating points

Both figures clearly show the boost in efficiency and performance given by the
accelerator. A high accuracy CNN architecture as GoogleLeNet requires nearly
2.5 GOPs to process a frame of 320 × 240 pixels. The peak performance curve shows
that even at modest voltages the system can sustain a full blown convolutional neural
network when using the HWCE. From both graphs we can see that when using the CPU
only the system can operate at very low voltages. This is possible thanks to the hetero‐
geneity of the L1 TCDM and the use of the SCMs. This ULP mode is very useful for
example in all the applications where the environment has to be monitored continuously
(light, noise, temperature) and only upon an event the full processing is performed. The
system can sustain a maximum of 14 GMAC/s at 1.2 V and reach an energy efficiency
of 108 GMAC/s/W.
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5.3 System Profiling

After measuring the SoC and the power supply in isolation we implemented a simple
power management firmware in the Apollo MCU and we measured the whole system
in different operation points and during a synthetic application in which we moved
through the different power modes. Figure 6 shows the profile with the states and the
measurements results of the whole sequence while Table 3 gives more details about the
states.

Fig. 6. Power profiling of the whole platform tested in our lab

Table 3. State Details

State Ambiq Apollo state MiaWallace SoC
state

MiaWallace cluster
state

Vdd
V

Freq
Mhz

Pwr
mW

Vdd
V

Freq
Mhz

Pwr
mW

Vdd
V

Freq
Mhz

Pwr
mW

Conv
Eff%

Perf
GMAC/s

1 2.1 20 0.2 1.13 50 9.1 1.16 50 38 85.8 1.8
2 2.1 20 0.3 1.13 50 0.7 OFF n/a <1u 91.1 n/a
3 2.1 20 0.3 1.13 200 34.5 1.16 350 330 86 12.5
4 2.1 20 0.3 1.13 200 1.3 OFF n/a <1u 87.2 n/a
5 2.1 20 0.2 0.79 5 0.7 0.68 5 1.8 79.3 0.02
6 2.1 20 0.3 1.13 5 0.2 OFF n/a <1u 90 n/a

6 Conclusions

In this paper we presented a multi-modal multi-processor platform designed to maximize
the energy efficiency of smart sensing applications. The platform can be supplied by a
single battery and can host a wide range of sensors trough several peripherals. The
platform exploits the combination of the two processors to achieve energy efficiency.
In particular, with the ultra-low power commercial microcontroller, it is possible to
achieve very low power states and manage the power supply of the rest of the platform.
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On the other hand, the presence of the multi-core energy efficient accelerator brings
extraordinary computational resources even when working in a very tight power enve‐
lope. The platform has been designed carefully also to achieve conversion efficiency on
the power domains needed for the PULP processor. Experimental results on the devel‐
oped platform shows the energy efficiency and the low power of the platform. The plat‐
form is ready to host sensors and applications that will be studied in future works.
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