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Abstract. Cameras and Inertial Measurement Units are widely used
for motion tracking and general activity recognition. Sensor fusion tech-
niques, which employ both Vision- and IMU-based tracking, rely on
their precise synchronization in time and relative pose calibration. In
this work, we propose a novel technique for solving both time and rel-
ative pose calibration between an optical target (OT) and an inertial
measurement unit (IMU). The optical tracking system gathers 6DoF
position and rotation data of the OT and the proposed approach uses
them to simulate accelerometer and gyroscope readings to compare them
against real ones recorded from the IMU. Convergence into the desired
result of relative pose calibration is achieved using the adaptive genetic
algorithm.

Keywords: Relative pose calibration · Inertial measurement unit ·
Tracking calibration · Genetic algorithm

1 Introduction

This paper briefly introduces the reader to the needs in the field of pose tracking
for augmented reality applications. Then it summarizes its main contribution
of relative pose and time calibration between an OT and an IMU. A survey
of the related work is presented before explaining the theoretical part of the
developed calibration approach. The largest portion of the paper is the actual
implementation, followed by convergence results of the rotation and translation,
as well as the time synchronization.

1.1 Motivation

6DoF pose estimation is important in the field of activity recognition, motion
recognition, and robotics. Most techniques use visual-based tracking, which suffer
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from bad lighting conditions. Other techniques employ IMUs, which suffer from
magnetometer distortions and integration drift. Recently, sensor fusion tech-
niques which combine both types of sensors to gain precise tracking, are trend-
ing in research. To improve their recognition accuracy they rely on relative pose
calibration between the sensors and synchronization in time.

1.2 Contribution

In this work, we propose a novel technique for estimating the three-dimensional
translation and three-dimensional rotation offset between an OT and an IMU,
as well as synchronization of their readings in time. It first gathers simultane-
ous data from tracked OT with 6DoF pose, and accelerometer and gyroscope
readings from IMU over a short period of time. Then it generates simulated
accelerometer and gyroscope readings based on the real measurement from the
optical tracking system. These simulated readings are compared against the real
IMU readings in a genetic algorithm to find out the best fitting 6DoF trans-
lational and rotational offset between them. Then it repeats the genetic algo-
rithm with shifted readings in order to minimize their time delay. Hardware-wise,
besides the optical tracking system and the IMU itself we do not rely on any
other external hardware like a turntable or other complex apparatus.

1.3 Related Work

With the research in vision- and inertial-based tracking and their simultane-
ous usage emerges the need of their calibration as a combination. J. Alves and
J. Lobo published first results in this field by aligning the rotation between a
camera and an IMU using vertical vision features and the vertical gravity vector
measured by an accelerometer [1]. They later refined their work by including the
translation calibration using a simple passive turntable and static images [6].
A year later Mirzaei and Roumeliotis proposed a Kalman filter-based algorithm
for IMU-camera calibration, where they removed the calibration constraints of a
special setup [8]. The follow-up research continued refining those results by using
different Kalman filter adaptations and hardware [4,5,10]. In filtering framework
approach, estimation of the pose of IMU is required, which is generally non-trivial
to achieve and requires complex modeling. Yet all of the mentioned research con-
siders a relative pose calibration between a camera and an IMU, while in our
case we are interested in the relative pose calibration between an OT and an
IMU using the adaptive genetic algorithm in corporate with simulating the IMU
readings. In this sense, our research direction is also similar to the estimation
of the relative 6DoF pose. To our knowledge, the relative pose calibration by
simulating IMU readings is not researched yet.

2 Relative Pose Calibration Approach

In this section, the calibration procedure is formulated to determine 6DoF rela-
tive pose between the OT and the IMU. We start by introducing three separate
reference frames which have been considered.



Relative 6DoF Calibration Between Optical Target and IMU 177

• Global frame G: The pose of the OT is represented with respect to this coor-
dinate frame which is fixed in the environment.

• Optical frame O: The OT represents this frame.
• IMU frame I: The IMU represents this frame and all the inertial measure-

ments are expressed in this coordinate frame.

Fig. 1. Global (G), Optical (O) and IMU (I) reference frames (x-axis red, y-axis green,
z-axis blue). The unknown transformation from the OT frame to the IMU reference
frame can be expressed by unit quaternion qIO (rotation from O to reference frame I )
and translation vector P I

O (3D position of the IMU with respect to frame O). Similarly,
the known pose of the OT is expressed by qOG (rotation from G to O) and PO

G (3D
position of the OT with respect to frame G). (Color figure online)

Fig. 2. Calibration algorithm flow diagram

Our approach consists of two major schemes, namely IMU Simulator and
Genetic Algorithm (GA). Figure 2 illustrates overview of our calibration algo-
rithm. The IMU Simulator uses the recorded tracking data (qOG , PO

G ) of the OT
and the unknown offsets (qIO, P I

O) randomly generated by the GA to simulate
corresponding IMU readings, represented as simulated angular velocity −→ω I

sim

and acceleration −→a I
sim in the IMU reference frame. As a next step, simulated

data is compared with the real data captured from the IMU to calculate the
fitness values as explained later in Subsect. 2.2. Depending on the fitness values,
GA generates new offsets in each iteration until the best individual (qIO, P I

O) is
found. To demonstrate the ability of our proposed approach, methodology has
been discussed in the following sections.
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2.1 Inertial Sensor System Simulation

Using optical tracking system, we can perceive “tracking” as measurement of
the position and orientation (qOG , PO

G ) of the OT with multiple markers. Inertial
sensor system simulation uses these measurements to simulate IMU readings in
terms of angular velocity and acceleration. The IMU and the OT are fixed on a
single rigid body as shown in Fig. 1. Generally, both these system data arrives
at different frequency rates. Therefore, it is necessary to compute the pose of
the OT at the same rate as the arriving IMU data for comparison. To solve this
problem we interpolate the qOG and PO

G at the timestamps tIMU of real IMU.
There are several methods available to interpolate the 3D positions and unit
quaternion orientations. Interpolating in quaternion space using unit quaternion
representation ensures a unique path under all circumstances. For the position
interpolation we are using Cubic Spline Interpolation method with a “not-a-
knot” condition, which means that, at the first and last interior break, even the
third derivative is continuous (up to round-off error). So, there are no breaks
at any knots. Continuity of this method is C2. In our case we have known PO

G

positions (knots) corresponding to optical timestamps toptical. So, for the given
data points (toptical1 , PO

G,1), ..., (topticaln , PO
G,n), S(toptical) is a cubic interpolating

spline function for this data if [7],

S(topticali ) = PO
G,i, i = 1, ..., n. (1)

Applying “not-a-knot” condition, which is:
...
S 1(t

optical
2 ) =

...
S 2(t

optical
2 ),

...
Sn−2(t

optical
n−1 ) =

...
Sn−1(t

optical
n−1 ), (2)

Spherical Linear Interpolation (SLERP) method can be used to interpolate
between two unit quaternions. But, while interpolating between series of the
unit quaternions, this method doesn’t provide smooth interpolation curve at
the nodes (qOG at toptical). To interpolate unit quaternion rotations of the OT
at tIMU with C2 continuity in interpolation curve, Spherical Spline Quaternion
Interpolation (SQUAD) [2] is used. The SQUAD method does cubic interpola-
tion between data points qOG,i and qOG,i+1 using Eqs. 3 to 7.

Slerp(qOG,i, q
O
G,i+1, T ) = qOG,i

sin((1 − T )θ)
sin(θ)

+ qOG,i+1

sin(Tθ)
sin(θ)

(3)

cos(θ) = qOG,i · qOG,i+1 (4)

Where T ∈ [0, 1] depending on the value of tIMU lying between two consec-
utive topticali and topticali+1 where we want to interpolate the quaternion,

T =
tIMU − topticali

topticali+1 − topticali

, (5)

Squad(qOG,i,q
O
G,i+1, si, si+1, T )

= Slerp(Slerp(qOG,i, q
O
G,i+1, T ), Slerp(si, si+1, T ), 2T (1 − T )), (6)
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The point si and si+1 are called inner quadrangle points which guarantee con-
tinuity across segments. For the data set of unit quaternions (qOG,1, q

O
G,2, ..., q

O
G,n),

s1 = qOG,1 and sn = qOG,n.

si = qOG,i exp(− log((qOG,i)
−1 ∗ qOG,i+1) + log((qOG,i)

−1 ∗ qOG,i−1)
4

) (7)

After applying interpolation procedures, the IMU pose with respect to the
global frame is calculated using Eqs. 8 and 9, by considering unknown relative
pose (qIO, P I

O) and known pose (qOG , PO
G ) at tIMU timestamps.

qIG = qOGqIO, (8)

P I
G = PO

G + qOGP I
Oconj(qOG), (9)

The reason behind interpolating the pose corresponding to timestamps tIMU

is to calculate simulated instantaneous inertial measurement readings to compare
with real readings acquired from the IMU at timestamps tIMU . The simulated
angular velocity −→ω I

sim in the IMU frame is calculated by taking the derivative
of quaternion dq

dt as expressed in Eq. 10.

−→ω I
sim = 2conj(qIG)q̇IG, (10)

An accelerometer measures the external specific force acting on the IMU sen-
sor. The specific force consists of both, the sensor’s acceleration and the Earth’s
gravity. Also, the IMU measures gravitational acceleration in the opposite direc-
tion of gravitational force. In our case gravity is acting towards the negative
Z-axis direction of global reference frame (G). So, the gravitational acceleration
vector −→a G

g consists positive acceleration g in Z-axis direction (Eq. 11).

−→a G
g = (0, 0, 9.81)ms−2, (11)

Acceleration in G frame −→a G
I,i is calculated by adding −→a G

g to the net lin-
ear acceleration from the change in positions P I

G at each time instances tIMU

according to Eq. 12. But, to compare with real IMU accelerometer readings, −→a G
I,i

needs to be expressed in the IMU reference frame by rotating it according to qIG
as in Eq. 13.

−→a G
I,i =

vG
i − vG

i−1

tIMU
i − tIMU

i−1

+ −→a G
g , (12)

−→a I
sim,i = conj(qIG,i)

−→a G
I,iq

I
G,i, (13)

Where, vG
i is the velocity at ith time instance tIMU

i . Calculated −→ω I
sim and−→a I

sim will be compared with the real IMU data (−→ω I
real,

−→a I
real) in Genetic Algo-

rithm technique to solve the calibration problem.
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2.2 Genetic Algorithm

In this work, we propose the usage of an Adaptive Genetic Algorithm [3] to find
the rotational and positional offsets between the OT and the IMU. It maintains
a population of n possible solutions with associated fitness values. Parents, in
this case rotations or translations, are sorted to produce new population based
on their fitness value, being the mean value of the difference between the sim-
ulated values (−→ω I

sim, −→a I
sim) and the real values (−→ω I

real,
−→a I

real), explained later
in this section. New generations of solutions are produced near the top previous
solutions using uniform distribution, which contain on average more good genes
than previous generation. Once the population has converged and is not produc-
ing new populations noticeably different from those in previous generations, the
algorithm itself is said to have converged to a set of solutions to the problem
at hand. This concept should be applied two times, first to get rotation offset
qIO while keeping translation offset P I

O = 0 followed by the second step, which
involves fixing the rotation offset obtained in the first part and searching for
the best translation offset P I

O. Note that the above is possible since we can use
a gyroscope simulation readings for comparison, which should not be affected
by the translation. In this case, fitness values Fgyro are calculated according to
the Eq. 14.

Fgyro =

∑N
i=1 |−→ω I

sim,i − −→ω I
real,i|

N
, (14)

For the translational offset approximation, the accelerometer readings are
used to calculate fitness values Facclr. Where N is a number of samples.

Facclr =

∑N
i=1 |−→a I

sim,i − −→a I
real,i|

N
, (15)

3 Experiment

3.1 Hardware

To justify the accuracy of our calibration algorithm we carried out several exper-
iments with hardware including, ART optical tracking system and the EPSON
IMU. ART provides 6DoF pose (qOG , PO

G ) of the optical target with four mark-
ers, these measurements are retrieved through DTrack2 SDK at 60 Hz frequency.
The IMU is a M-G350-PD11 model manufactured by EPSON, which provides
angular velocity −→ω I

real and acceleration data −→a I
real at 125 Hz. Both of these are

mounted on a 45 cm long rigid beam (see Fig. 3), the IMU on one end and the
OT on the other end with freedom to vary the distance in between them.
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Fig. 3. 45 cm long rigid beam mounted with OT and IMU

3.2 Data Acquisition

At the start of each experimental trial we perform free non-specified movement
around each axis of the beam for approximately 30 s, and gather the data from
OT and the IMU system. There is no constraint on how one should move the
beam during experiment. 6DoF pose is interpolated from 60 Hz to 125 Hz as
explained in Sect. 2.1 to get −→ω I

sim and −→a I
sim. Random generation of qIO and P I

O

is explained in Sect. 3.3.

3.3 Genetic Algorithm Implementation and Parameters

Algorithm 1 illustrates a pseudo-code of the implementation of the genetic
algorithm:

Initial Run: Using uniform distribution, here we generate 10000 random seeds
(qIO, P I

O), out of which 1000 best are selected for our adaptation iterations. We
place no limit on the rotation direction, while for the translation all the three axes
are limited to be in the range of [−1, 1] meters. In order to evaluate our resulted
genes (qIO, P I

O) we compute corresponding simulated gyroscope and acceleration
readings for comparison with the real ones by calculating the average over the val-
ues of the vector difference between simulated and real vectors (Eqs. 13 and 14).

Since the double differentiation of discrete positions generates artifacts, win-
dow based sliding average smoothing over the simulated acceleration readings is
required before comparing them with the real ones [9]. We considered a window
size of 7 discrete values.
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Input: 60 Hz 6DoF optical target data OTD consisting of 3-D position OTPos
and 3-D rotation OTRot, 125 Hz 3-D accelerometer AReal and 3-D
gyroscope GReal inertial measurement unit data IMUD

Output: 6-DoF translational v and rotational r offset between the OT and the
IMU as well as their time synchronization t

for s ← −10 to 10 do
shift OTD by s
synchronize OTD rate to IMUD rate with Spline and SQUAD

vs ← (0, 0, 0)
for i ← 0 to 9999 do

rqi ← random quaternion
GSim ← simulated values according to rq and vs
qdisti ← avg(|GSim − GReal|)

sort(rq by qdist)
maxangle ← 60
for repeat ← 0 to 9 do

for i ← 0 to 249 do
for axis ← 0 to 2 do

maxangle ← maxangle ∗ (repeat − 1)/repeat
rangle ←random angle between ±maxangle
rq[250 + i ∗ axis] ← rqi rotated over axis by rangle
GSim ← simulated angular velocities according to rq
qdisti ← avg(|GSim − GReal|)

sort(rq by qdist)

rs ← rq0
maxdist ← ±1
for i ← 0 to 9999 do

rvi ← random vector; ASim ← simulated values according to rv and qs
vdisti ← avg(|ASim − AReal|)

sort(rv by vdist)
maxdist ← 0.1
for repeat ← 0 to 9 do

for i ← 0 to 249 do
for axis ← 0 to 2 do

maxdist ← maxdist ∗ (repeat − 1)/repeat
vtrans ←random vector between ±maxdist
rv[250 + i ∗ axis] ← rvi translated over axis by vtrans
ASim ← simulated accelerations according to rv
smooth(ASim)
vdisti ← avg(|ASim − AReal|)

sort(rv by vdist)

vs ← rv0
t ← s[min(vs + qs)]
return t, vs, rs

Algorithm 1. Calibrate-OT-IMU synchronizes and calibrates the rel-
ative translation and orientation between optical target and inertial mea-
surement unit
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Adaptation Iterations: We converge to the desired rotation or translation by
filtering out the best 250 results out of 1000. Then for each axis we rotate or
displace by a given factor f , depending on the iteration progress. The factor is
being reduced according to the formula in Eq. 16.

f =
iterations − 1

iterations
(16)

The initial rotation range is set in the range ±60◦, while the translation range
is set to ±10 cm. 10 iterations are performed, which means that on the second
iteration the rotational range will be ±54◦ and the translation range will be
±9 cm. We choose again a random value in the range using uniform distribution.
This way, 250 best population from the previous iteration are stored and 750
new population around them are generated in each iteration.

Time Shifting: We store the best result and its fitness value after each run of the
genetic algorithm. Then, the tracked IMU real data is shifted over the time line
followed by rerunning the algorithm to see for which time shift the best result is
achieved. We do this, because our initial synchronization suffers from hardware
constraints like IMU data latencies.

4 Results

The effectiveness of the proposed approach is measured in terms of how it con-
verges to the desired results in terms of rotation offset, translation offset, and
time synchronization. The translation reference estimate (T ) for this experiment
is obtained by measuring the distance of the IMU reference frame I origin from
the optical target frame O origin based on the information provided in the data
sheets of ART 1 and EPSON IMU2. During the experiments, the translation
offset from O to I is T = (0.40, 0.025,−0.07) m and the rotation offset was
set to be zero using calibration technique provided in ART tracking system.
By plotting the data captured from both sensor systems, time delay was mea-
sured to be between 32 and 40 ms. An exact time delay during the experiment
couldn’t be measured due to sampling rate disturbances in both DTrack and
Epson recording soft- and hardware. We performed several experiments with
this ground truth and ran the algorithm multiple times to measure its different
outputs. From those the computed translations had an average 3D difference of
(0.0032837, 0.0059151,−0.00427) m, and the quaternion rotation had component
wise an average difference of (0.000656,−0.00515105,−0.00317474, 0.0357037).
Sections 4.1, 4.2 and 4.3 show our genetic algorithm convergence to its best cho-
sen rotation offset, translation offset, and time offset in the experiment with the
mentioned reference estimates.

1 ART System User Manual, version 2.1, April 2015.
2 M-G350-PD11 Datasheet, 21 October 2012.
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4.1 Rotation Convergence

Figure 4 illustrates 3 different iteration steps of our rotational convergence:

Fig. 4. 3-D rotational convergence to (1, 0, 0, 0) (Color figure online)

In (a) we see the 1000 best results after filtering with sorting the ini-
tial seed phase consisting of 10000 seeds. In (b) we see iteration 3 and
in (c) is iteration 10, our best result which belongs to quaternion qIO =
(0.999344,−0.00515105,−0.00317474, 0.0357037), and is close to the rotation
reference estimate qIO,ref. = (1, 0, 0, 0). The dots represent rotations of vector
(1, 0, 0) according to the generated quaternion seeds. And the color transition
from red to green represents bad and good fitness values respectively. Which
means best obtained qIO will rotate vector (1, 0, 0) to new position (0.99743,
0.071393, 0.0059775) as in Fig. (c).

4.2 Translation Convergence

Figure 5 illustrates 3 different iteration steps of our translational convergence:

Fig. 5. 3-D translational convergence to (0.40, 0.025,−0.07) m (Color figure online)
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In (a) we see the 1000 best sorted results after filtering the initial seed phase
consisting of 10000 seeds. In (b) we see iteration 3 and in (c) iteration 10, our
best result which belongs to translation P I

O = (0.389506, 0.0160174,−0.0652339)
m, and is closer to the translation reference estimate T = (0.40, 0.025,−0.07) m.
The color transition from red to green represents bad and good fitness values
respectively.

4.3 Time Synchronization

For the obtained best results qIO and P I
O, our best time match varied between 40

and 32 ms, which corresponds to five and four samples arriving at 125 Hz rate
respectively. This has been justified by Figs. 6 and 7 representing the comparison
between real and simulated values of the Gyroscope and Accelerometer.

O
m

eg
a(

ra
d/

s)

t(s)

2

1

0

-1

-2

-3
25

simGy_x

simGy_y

simGy_z

realGy_x

realGy_y

realGy_z

20151050

Simulated and Real Gyroscope readings

0

-0.5

-1

-1.5

5.65.45.254.84.6

0.5

Fig. 6. Time synchronization comparison between simulated (solid) and real (dotted)
accelerometer readings. Left full experiment plot, right is the magnified portion of the
same plot.

A
c(

m
/s

^2
)

t(s)

15

10

5

0

-5

-10

-15
25

simAc_x

simAc_y

simAc_z

realAc_x

realAc_y

realAc_z

20151050

Simulated and Real Accelerometer readings

3

2

1

0

4.543.5

4

Fig. 7. Time synchronization comparison between simulated (solid) and real (dotted)
gyroscope (right) readings. Left full experiment plot, right is the magnified portion of
the same plot.
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Figures 6 and 7 indicate that both simulated and real accelerometer, gyro-
scope readings are significantly close to each other. Which justifies the resulted
best orientation offset qIO and the translation offset P I

O obtained in this
experiment.

5 Conclusion

This paper described a novel approach to accurately determine the 3D rota-
tional offset, 3D translational offset and a time synchronization in data between
an optical target and an inertial measurement unit. It consists of creating simu-
lated acceleration and gyroscope readings by applying 6-DoF offset to the opti-
cal target and compare them against the real ones from the IMU in an adaptive
genetic algorithm. The experiments shown in the previous section suggest that
the developed system delivers admirable results in all three tasks it has been
designed for. Furthermore, it is not dependent on supplementary hardware or
other constraints besides the factory calibration of the optical tracking system
and its target as well as the inertial measurement unit calibration. Additionally,
for operation in different environment, our method enables rapid re-calibration
when the relative pose of the sensors must be changed. Thus, we consider the
technique as applicable in the fields of augmented reality, robotics and automo-
tive industry. We plan to continue our work in two directions - by making more
extensive evaluations of our system and implementing a sensor fusion techniques,
which relies on it.
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