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Abstract. Power-requirements of a wireless wearable sensor for quan-
tification of asthmatic wheezing in respiratory sounds, a typical symp-
tom of chronic asthma, are analysed. Two converse sensor architectures
are compared. One featuring processing-intensive on-board respiratory
sound classification, and the other performing communication-intensive
signal streaming, employing compressive sensing (CS) encoding for data-
rate reduction, with signal reconstruction and classification performed on
the peer mobile device. It is shown that lower total sensor power, ranging
from 216 to 357 µW, may be obtained on the sensor streaming the CS
encoded signal, operating at the compression rate higher than 2x. Total
power-budget of 328 to 428 µW is shown required in the architecture
with on-board processing.

Keywords: m-health · Body sensor networks · Asthmatic wheeze detec-
tion · Digital signal processing · Compressed sensing · Power-analysis

1 Introduction

Asthma is one of the most widespread chronic respiratory disorders, requiring
long-term treatment [1,2]. Quantification of its common symptom, occurrence
of asthmatic wheezing in the respiratory sounds remains an open subject to
research in the fields of pattern recognition [3–5], and biomedical sensor systems
consisting of wearable sensors and smartphones (i.e. m-health) [6–9]. This paper
builds upon previous research [10–15], and explores power-tradeoffs of asthmatic
wheeze detection wireless wearable sensor architectures.

It is assumed that the sensor system consists of a body-worn sensor and
a mobile device (i.e. smartphone). Sensor consists of the following subsystems:
acoustic sensor, analog signal conditioning circuit, A/D converter, digital signal
processing unit, and low-power radio for communication with smartphone [10].
Analysis covers three operating scenarios w.r.t. distribution of digitization, signal
processing and communication among sensor system components.

In the first, (referent) operating scenario, sensor acquires the signal at
Nyquist rate. Apart signal acquisition, no particular DSP processing tasks are
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performed on sensor. Raw signal is wirelessly streamed over to the smartphone,
where respiratory sound classification is performed. Scenario is motivated by the
idea of simplification of the sensor design, and using the smartphone as the main
signal processing platform.

In order to lower quantity of data (i.e. power) streamed from sensor to smart-
phone, second scenario utilizes concept of compressed sensing (CS) [16–18] to
mutually lower the data rate, whilst retaining the low complexity of the sen-
sor. Sensor performs signal acquisition at the sub-Nyquist rate [12], simulta-
neously compressing it (CS encoding). Compressed signal is streamed over to
the smartphone. There, an additional decoder subsystem block performs signal
reconstruction [13,14]. Finally, classification is performed [15].

In third scenario, sensor performs on-board (on-patient) signal acquisition
and respiratory sound classification [11,15] (at Nyquist-rate), and periodically
reports the classification outcome to smartphone. Scenario enables for high-
est sensor autonomy (independence of the radio link quality and smartphone
processing resources), and minimizes data traffic [10].

Paper is organized as follows: In Sect. 2 each of sensor’s subsystems is
analysed from the aspect of power efficiency. Based on this, total sensor power
consumption is analysed in Sect. 3. Paper is concluded in Sect. 4.

2 Power Analysis of Sensor Subsystems

2.1 Acoustic Sensors and Analog Signal Conditioning

Sensor and analog signal conditioning circuit design complying with standard-
ised guidelines for respiratory sounds acquisition [19,20] was analysed. Micro-
phones and accelerometers were evaluated as sensors. Representative sensor tech-
nologies were evaluated: electret-condenser microphone (KEEG1542, Knowles),
MEMS microphone with analog output (ADMP404, Analog Devices; ICS-40310,
Invensense), MEMS microphone with digital output (ADM441, Analog Devices).
Capacitive MEMS accelerometers were evaluated (ADXL337/345, Analog).

Table 1 shows that in comparison to electret-condenser microphones and
accelerometers, analog MEMS microphones feature highest power-efficiency,
enabling for power consumption as low as 16 µW (i.e. ICS-40310). However, they
feature high output impedance. Classically used electret-condenser microphones
exhibit worst power-efficiency. Accelerometers offer comparable consumption to
microphones, but may feature lower bandwidth and sensitivity. Advantage of
digital systems-on-chips (SoC), such as ADMP441 or ADXL355 is integration
of a complete signal chain, consisting of sensor, analog conditioning, ADC, and
standard encoding of digitized output signal (I2S or SPI).

Analog signal conditioning circuit for respiratory sound acquisition accom-
modates several functionalities: (1) signal amplification, as the typical sensor’s
output signal magnitudes reside in range of 1 to 10 mV (see typical sensitivities
in Table 1). Amplifier’s input is required to handle sensors output impedance
typically in order of kΩ. (2) band-pass filtering with lower corner frequency
around 100 Hz to filter-out heart sounds, and upper corner frequency adjusted
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to sampling frequency for anti-aliasing. Assuming a microphone model chosen
such to filter-out the low-frequencies by its frequency-characteristics, and that
anti-aliasing is realised by passive RC filter, power consumption of an condi-
tioning circuit based on a single instrumentation amplifier, such as INA333, was
estimated at approx. 85 µW by Spice simulation.

Table 1. Comparison of acoustic sensors’ power consumptions.

Technology Component Sensitivity Imped Power

MEMS mic., dig. (I2S) ADMP441 −26 dBFS - 2520 µW @ 1.8 V

Electret cond. mic. KEEG1542 −42 dB 2.2 kΩ 1000 µW @ 2.0 V

Analog accel. ADXL337 300mV/g 32 kΩ 900 µW @ 3.0 V

MEMS mic., analog ADMP404 −38 dBV 200 Ω 375 µW @ 1.5 V

Accel., digital (SPI) ADXL345 3.9 mg/LSB - 350 µW @ 2.5 V

MEMS mic., analog ICS-40310 −37 dBV 4.5 kΩ 16 µW @ 1.0 V

2.2 Signal Digitization

Two cases of signal digitization were analysed. First is Nyquist-rate signal sam-
pling at 2 to 8 kHz [11] for scenarios of on-board processing or raw signal stream-
ing), and second is compressive sampling (CS) at temporally non-uniform time-
instants, as proposed in [12,14]. In case of CS, ADCs were tested at sub-Nyquist
sampling rate corresponding to signal compression ratios of 2x to 8x (min.
250 Hz). Power efficiency tradeoffs of 12, 16, and 24 bit successive approxima-
tion (SAR) and sigma-delta analog to digital converters (ADCs) were compared.
Components were chosen to support on-demand operating (triggered by signal
processor), and entering power-saving state upon completing the conversion.

Table 2. Parameters of the tested ADCs

Technology Component ENOB Nominal
sample-rate

Average power
@ 1 kSPS

12-bit SAR ADS7924 11 10 kS/s 10 µW

16-bit SAR AD7684 14 100 kS/s 15 µW

12-bit sigma-delta ADS1014 12 3.3 kS/s 92 µW

16-bit sigma-delta ADS1114 16 0.860 kS/s 368 µW

24-bit sigma-delta ADS1251 19 20 kS/s 1.95 mW

A list of representative components with their respective performance is listed
in Table 2. From power-up time, number of erroneous conversion samples, and
conversion time, total active time was estimated for each component. From the
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total active times, power consumptions at the nominal sampling rate, and the
sleep powers, average powers of the active/sleep duty-cycle were extrapolated,
for the whole analysed range of sampling frequencies from 250 Hz to 8 kHz.

Figure 1 confirms that the lowest power is obtained for ADC-s featuring a
combination of lowest supply voltage, active and sleep current, and supporting
high throughput. Specifically, for the required range of sample rates, SAR models
show clear advantage in average power over sigma-delta. With the 24-bit sigma-
delta, 1 mW suffices for the average sample rate of merely 500 Hz. Thus, 16-bit
SAR is considered optimal for respiratory sound digitization, consuming in range
of 6 to 123 µW for the range of sample rates of 250 Hz to 8 kHz. In comparison
to 12-bit SARs, consumption of the 16-bit SAR is about 50% higher.
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Fig. 1. Comparison of average power consumption of 12, 16 and 24-bit SAR and sigma
delta ADCs in duty-cycle mode w.r.t sample rates of 250Hz to 8 kHz.

2.3 Signal Processing

Processing Cores for Respiratory Sound Classification. Problem of asth-
matic wheeze detection comes down to identification and spectro-temporal local-
ization of unknown, temporally-changing instantaneous frequencies of individ-
ual frequency lines of asthmatic wheezing. Algorithms recently proposed for
DSP implementation include either fast, heuristic algorithm [11] (i.e. referent),
or more robust HMM-based [15] algorithms. Power-cost of their execution on
commercial processing cores is analysed here. As a general rule, processing cores
were selected to feature lowest active state power at highest operating frequency,
in combination with low sleep state power, yielding potentially lowest average
power [21]. Table 3 summarizes a list of the tested cores.

Three categories were analysed. First were the proprietary audio DSP cores,
taking advantage of architectural accelerators for DSP functions, such as paral-
lel multiply-and-accumulate units, barrel-shifters for floating-point operations,
vector multiply, hardware FFT coprocessors, specific data transport I/O units
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such as I2S. Also they are typically supported with extensive library of soft-
ware functions for audio processing. 16-bit fixed-point lowest-power DSP cores
were evaluated for on-board signal processing: TMS320C5535 (Texas Instru-
ments) and ADSP2188N (Analog Devices). They were compared to a legacy
16-bit 56xxx core MC56F8006 (Freescale Semiconductors), and higher powered
32-bit ColdFire core MCF51MM128 (Freescale Semiconductors).

Table 3. Parameters of the tested digital signal processors.

Processing core Component Freq., MHz µW/MHz Sleep, µW

audio DSP, 32-bit ColdFire MCF51MM128 50 1740 84.0

audio DSP, 16-bit 56800E MC56F8006 32 4282 521.4

audio DSP, 16-bit
ADSP-21xx

ADSP2188N 80 562 180.0

audio DSP, 16-bit C55xx TMS320C5535 100 220 220.0

high-perf. MCU, 32-bit ARM
Cortex-M3

STM32L151C8 32 540 25.0

signal acq. MCU, 16-bit
ARM 7 TDMI

ADUC7060 10 775 137.5

low-power MCU, 32-bit ARM
Cortex-M0

LPC1102 50 462 6.6

low-power FRAM MCU,
16-bit MSP430

MSP430FR572x 24 275 19.2

Bluetooth SoC, 8-bit 8051 CC2541 32 628 2.7

Bluetooth SoC, 16-bit ARM
Cortex-M0

nRF51422 32 495 6.9

Bluetooth SoC, 32-bit ARM
Cortex-M4

BGM113 38.4 307 2.7

Bluetooth SoC, 32-bit ARM
Cortex-M3

CC2640 48 110 4.9

Bluetooth SoC, 32-bit ARM
Cortex-M4

nRF52832 64 100 1.7

Second category were general purpose MCU-s. High performance 32-bit
ARM Cortex-M3 (STM32L151C8, ST Microelectronics) was compared to lower-
powered ARM Cortex-M0 (LPC1102, Linear Technologies). 32-bit ARM cores
were evaluated against proprietary 16-bit MSP430 core clocked at 2x lower fre-
quency w.r.t. ARM Cortex-M0, but executing code from ultra-low power ferro-
electric (FRAM) program memory (MSP430FR572x, Texas Instruments). Also,
a dedicated signal acquisition controller based on older, 16-bit ARM 7 core cou-
pled with high precision ADC, (ADUC7060, Analog Devices) was included.

Third category were processing cores embedded in system-on chip (SoC)
Bluetooth 4 communication modules. Latest generation SoC featuring 32-bit
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ARM Cortex-M3 (CC2640, Texas Instruments) is compared to two different
ARM Cortex-M4 cores (nRF52832, Nordic Semiconductors; BGM113, Silicon
Labs). They were compared to previous-generation SoCs featuring 16-bit ARM
Cortex M0 (nRF51422, Nordic Semiconductors), and 8-bit 8051 core (CC2541,
Texas Instruments).

Execution times of two analysed algorithms were derived from their respec-
tive analytical execution models given in [11,15]. Models show that algorithms’
execution time is dominantly dependent on: (1) frequency resolution (number of
observed frequency states M), and (2) number of frequency lines L. Motivated
by the dependence of execution time on signal content, a test-environment was
constructed to asses the dependency of average processing power to the symp-
toms severity, simulating the realistic operating conditions. Symptoms severity
was modelled by: (1) percentage of respiratory cycle obstructed by wheezing
(wheeze rate [2]), and (2) symptom occurrence frequency.

Execution time of both algorithms was calculated on each processing core
for each combination of wheeze rate, symptom rate, number of processed fre-
quency states (M). Cores’ operating frequency, register width w.r.t. assumed
16-bit data width, and cost of multiplication w.r.t. addition were taken into
consideration. Knowing the intervals between consecutive processing, processing
duty-cycle (portion of active-time) was calculated from execution time. Finally,
average processing power was calculated, using the active and sleep power. Sleep
power was based on power-state where all required periphery for short wakeup,
periodic signal sampling is operative, and the memory content is retained.

Example results, showing increase of average power proportional to symp-
toms rate and wheeze rate, for HMM-based algorithm are shown in Fig. 2,
contrasting algorithm execution on two most representative cores: 100 MHz
16-bit audio processing DSP (C5535), and 48 MHz 32-bit general purpose ARM
Cortex-M3 core within Bluetooth 4 SoC (CC2640). After normalization of clock
frequencies, Cortex-M3 turns out 25% more efficient.
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Fig. 2. Power requirements on a 16-bit audio DSP and general purpose MCU.

Overall results are shown in Fig. 3. In Fig. 3a cores are sorted by worst-
case power required for processing of wheezing w.r.t. power for processing of
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Fig. 3. Ranking of processing cores by resources for wheeze classification.

normal respiratory sound, by both algorithms. It can be seen that for HMM-
based algorithm, processing of wheezing may require approx. up to 45% more
power than processing of normal respiratory sounds. On the other hand, referent
algorithm shows negligible difference.

Best performance are obtained for ARM Cortex-M4 and M3 cores in Blue-
tooth 4 SoCs (nRF52832 and CC2640). Best overall results are obtained on a
64 MHz Cortex-M4 (nRF52832), ranging from 308 to 452 µW. Dedicated low-
power audio C55xx DSP (TMS320C5535) requires approximately 2.7 times more
average power. Worst efficiency is obtained with ADUC7060 signal acquisition
controller, high-performance 32-bit ColdFire audio DSP core (MCF51-MM128),
and the legacy 16-bit 568xx DSP core (MC56F8006). Also, legacy Bluetooth
SoC module featuring 8051 core (CC2541) proves suboptimal due to 8-bit archi-
tecture, low clock-frequency etc.

Real-time processing constraints are analysed by examining average and
worst-case processing duty-cycles, compared in Fig. 3b. Results show that least
resources are spent by dedicated audio DSPs TMS320C5535 (worst-case 10%
of processing time) and ADSP2188N. It is shown that due to low max. Clock-
frequency (only 10 MHz), ADUC7060 signal-acquisition controller hardly meets
worst-case real-time requirements when running HMM-based classification algo-
rithm. Also, 8051 and MSP430 spend high portions of their processing time, 60%
and 40%, respectively.

Processing Cores for CS Encoding. In the operating scenario of compressed
signal streaming, power requirements of the CS signal encoder implementing
sub-Nyquist sampling of analog input signal, at psudo-random, non-uniformly
spaced sampling instants [12,14], are evaluated. As ADC power was covered
in Sect. 2.2, analysis focuses on power spent on processing tasks implementing
the LFSR pseudorandom number generator and the sampling period scheduler
blocks in MCU software, and operation of the MCU’s timer peripheral unit.
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CS-encoding may be broken down to following tasks: (1) generation of LFSR
pseudo-random output, (2) sampling-instant scheduling (3) timer setup of the
timer, (4) triggering the ADC conversion. Cost of MCU implementation within
FreeRTOS was empirically verified on prototype implementation on MSP430 to
approx. 150 instructions per single CS-encoded sample.

Total cost of CS encoding was simulated for a range of CS sub-Nyquist sample
rates corresponding to compression ratios of 2, 4, 5.33, and 8 w.r.t. Nyquist
sampling frequency of 2 kHz. In addition to MSP430, power-cost of CS encoding
was simulated on several additional MCU cores: on ADUC7060 signal acquisition
controller, and on MCUs within Bluetooth 4 SoCs nRF52832, CC2640, BGM113,
nRF51422 and CC2540. Results in Fig. 4 show that most efficient implementation
may be achieved on Bluetooth 4 SoC ARM Cortex cores. On nRF52832 power
for CS encoding ranges from 17 to 63 µW, while on CC2640 costs from 22 to 73
µW. It is shown that CS encoding on nRF52832 in worst simulated case spends
less than 1% of processing time.
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Fig. 4. Ranking of processing cores by resources for CS encoding.

2.4 Bluetooth Communication

Bluetooth 4.x (i.e. Smart, Low Energy) radio technology is evaluated for wireless
data transfer, as it enables for interoperability with smarphones and medical
certification [6], while retaining low-power operation. Highest level of integration
is provided with system-on-chip (SoC) modules, packaging digital radio, radio
controller implementing Bluetooth stack, an application processor, and a variety
of standardized peripheral interfaces.

State-of-the-art Bluetooth 4 SoCs are analysed from stand point of power
consumption: CC2640, CC2541 (Texas Instruments), BGM113 (Silicon Labs)
and nRF52832 (Nordic Semiconductors). Table 4 compares their average power
in most characteristic operating states: radio transmission (TX), radio listening
(receiving, RX) and sleep. Power reduction in TX and RX of order of magnitude
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of 2 to 3 times can be observed when comparing previous and actual generations
of Bluetooth 4 SoCs (CC2541 w.r.t. CC2640, nRF52832, and BGM113). Increase
of processing power enables for implementation of respiratory sound classification
algorithms on-board SoC’s application processor.

Bluetooth 4 communication protocol is designed to foster low average power
by featuring intermittent, short active time (TX, RX) of the radio, in combi-
nation with long sleep time in between connection intervals. Data packets are
exchanged only at predefined periodical connection intervals, during so-called
connection events. Upon completion of the connection event, radio is put to
sleep until the next one [22]. Duration of connection event is minimized by high
throughput (typically 2 Mbit over-the-air). Typical waveform of the CC2640
radio’s power-supply current measured during the connection event, segmented
into a sequence of common power-states is shown in Fig. 5a (see labels 1 to 6).

Table 4. Parameters of the tested Bluetooth 4 SoC modules.

Component Application processor TX, mW RX, mW Sleep, µW

CC2541 8-bit 8051 36.4 35.8 2.0

BGM113 32-bit ARM Cortex-M4 16.3 16.1 2.6

nRF52832 32-bit ARM Cortex-M4 13.1 12.0 2.8

CC2640 32-bit ARM Cortex-M3 11.3 10.9 1.9

Due to number of parameters influencing durations of each power-state, we
focused our power analysis on CC2640, on account of availability of extensive
Bletooth power estimation guidelines, tools, and data [22]. Analysis assumes
following parameteres and limitations of CC2640. Power is measured at supply
voltage of 1.8 V. Output power of transmitter is set to 0 dBm as communica-
tion between sensor and smartphone is taking place at the very short range
(i.e. <10 m). Maximal payload size during single connection event is limited
by Bluetooth software stack to 256 bytes. Time between successive connection
intervals may range from minimally 7.5 ms to maximally 4.0 s.

With given constraints, average power was calculated for each of three oper-
ating scenarios: (1) streaming of uncompressed data, digitized at Nyquist rate.
Cases of sampling (streaming) rates of 8 kHz and 2 kHz are singled out. 8 kHz
case corresponds to case where the referent crest-tracking algorithm [11] is
employed for classification on smartphone. 2 kHz case corresponds to classifi-
cation by HMM-based algorithm [15]. (2) in scenario of CS compressed signal
streaming, 4 compression ratios w.r.t Nyquist frequency of 2 kHz were analysed:
2, 4, 5.33 and 8x. Payload size is calculated w.r.t. original signal block size of
N = 256 and 75% overlap. Also, each TX payload size is increased by 2 addi-
tional bytes needed for pseudorandom seed. (3) scenario of respiratory sound
classification on-board sensor. Here, binary block-wise classification outcome is
encoded in periodically sent report messages. Connection period and payload
size depend on classification algorithm (sampling frequency, signal block size),
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and payload content: whether the stream of raw binary classification outcomes
corresponding to each signal blocks is sent, or if wheeze-rate is calculated for a
predefined temporal window. In all scenarios, 2-byte RX acknowledge message
is assumed.

Relative contributions of the payload size and connection interval to average
power were compared, by accumulating (buffering, storing) the TX data on sen-
sor for multiple connection intervals spanning up to the maximal payload size,
and then transmitting it in bulk. Table 5 summarizes tested scenarios, nomi-
nal payload sizes, and the span of possible connection intervals supporting the
transmission given the payload size limitations (i.e. 256 bytes on CC2640).

Table 5. A list of tested communication scenarios, with best-case average power.

scenario, case min. payload
TX/RX, bytes

conn. intvl.
span, ms

min. avrg.
power, µW

Nyquist-rate streaming, fs 8 kHz 256/2 16–32 914

Nyquist-rate streaming, fs 2 kHz 128/2 31.25–62.5 373

CS streaming, compr. 2x (64 + 2)/2 31.25–125 168

CS streaming, compr. 4x (32 + 2)/2 31.25–250 81

CS streaming, compr. 5.33x (24 + 2)/2 31.25–250 79

CS streaming, compr. 8x (16 + 2)/2 31.25–250 77

class. result reporting 2/2 125–4000 8

(a) Example waveform of current measured
during a single Bletooth 4 connection event:
1 - RTOS wake-up, radio setup; 2 - radio on,
transition to RX; 3 - radio listening (RX); 4
- transition from RX to TX; 5 - radio trans-
mission (TX); 6 - processing the received
packets, going to sleep [22].
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Fig. 5. Power requirements of Bluetooth 4 communication.

Spans of average powers required for communication in each operating scenario
w.r.t. time between successive Bluetooth connection events are shown in Fig. 5b.
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It is shown that due to very short active times (i.e. high data rate), sleep power
spent in-between connection intervals dominantly influences average communica-
tion power, much more than the change of payload size. This causes the average
power to exponentially fall with increasing connection interval. Thus, it is proposed
to maximally prolong (sleep) time between connection intervals by accumulating
data, up to maximal transmission packet payload size.

Nyquist-rate data streaming proves most costly, costing 914 µW at 8 kHz
(see Table 5). Drastic decrease in case of Nyquist-rate streaming at 2 kHz is
primarily due to increase of connection intervals. Identical mechanism is the
reason for decrease from 168 to 81 uW when step-up from CS compression ratio
of 2x to 4x. On the other hand, minimal difference in average power is observed
in the cases of identical connection intervals, where only payload size is increased
(e.g. at the CS compression ratios 4x, 5.33x, and 8x). In scenario of on-board
classification, minimal average power of only 8 µW is achieved at the maximal
connection interval of 4 s.

3 Total Power Consumption

Here, total power of asthmatic wheeze sensor is analysed for each of three operat-
ing scenarios from Sect. 1. To enable for comparable performance in all operating
scenarios, analysis is based on a sensor architecturally constituting of common
subsystem components. As a sensor, analog MEMS microphone (such as ICS-
40310) in combination with analog front-end from Sect. 2.1 is proposed. 16-bit
SAR ADC (e.g. AD7684) is taken for digitalization. Processing and communi-
cation is implemented on the Bluetooth 4 SoC featuring the ARM Cortex-M4
processing core, proven optimal for both on-board classification and CS encod-
ing tasks. In CS scenario, power-analysis is focused on compression ratios of 2x
to 5.33x. Analysis is based on the representative CC2640 SoC.

Total powers are compared in Fig. 6. Being constantly powered and archi-
tecturally identical, the sensor and the analog conditioning circuit contribute
equally to total power by 101 µW in all scenarios. Power contributions of remain-
ing subsystems are scenario-dependent.
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Fig. 6. Breakdown of total power per subsystems for different scenarios.



160 D. Oletic and V. Bilas

In the scenario of on-board classification, lower total power is obtained for
the case of HMM-based algorithm operating on signal sampled at 2 kHz. Total
power averaged 320 µW, with a major share of 56% being taken by classification
algorithm. Classification using the referent crest-tracking algorithm results in
31% higher power (i.e. 420 µW).

In scenario of streaming of CS-encoded signal, total power scales down
expectedly with increasing compression ratio. At the lowest compression ratios of
4x and 5.33x, it yields 228 and 216 µW, respectively. Majority of power is spent
on communication. However, significant processing share related to CS encoding
occurring at low compression ratios (e.g. 76 µW for compr. ratio of 2x) points
to inefficiency of MCU software implementation of CS encoding. This could be
improved by implementing CS encoder in hardware.

Scenario of uncompressed signal streaming virtually excludes any process-
ing, and largest portion of power is spent on communication, proportional to
the sample-rate. In best case (at 2 kHz, assuming classification using HMM-
based algorithm on smartphone), power totalled 505 µW. At 8 kHz it doubled
to 1138 µW. Thus, streaming of uncompressed signal proves to be the worst
solution.

4 Conclusion

Architecture of the sensor for detection of asthmatic wheezing was analysed
from the perspective of energy efficiency. Analysis has shown that analog MEMS
microphones feature best power-efficiency, and with the proposed analog signal
conditioning circuit total about 100 µW. For signal digitization, 16-bit succes-
sive approximation (SAR) ADC architecture proved optimal. Power analysis of
wireless packet transfer via Bluetooth 4 has confirmed that power savings are
more affected by connection intervals, than by payload size.

Lowest total power, ranging from 216 to 357 µW, may be obtained on the
sensor performing CS encoding, operating at the compression rate higher than
approx. 2x. By requiring less processing power, it outperforms best-case on-board
classification 1.8 times. Also, by reducing the communication cost, it yields 2.2
times lower total power w.r.t. uncompressed signal streaming. This confirms
usability of practically implemented CS encoding in systems where off-loading
the sensor in terms of power consumption is a primary design criteria. CS offloads
the communication subsystems on both peer devices, and shifts the most of
the acquisition and processing power-burden from sensor to the processing on
the smartphone (i.e. into the cost of CS reconstruction and respiratory sound
classification). Efficiency of the MCU-based LFSR pseudorandom CS encoder
design may be increased by hardware implementation.

In contrast, sensor design with on-board processing minimizes power spent
on communication, and the bottleneck are respiratory sound classification algo-
rithms. Power analysis of the processing subsystem has shown that 32-bit ARM
Cortex M3/M4 cores embedded within Bluetooth 4 SoC modules feature opti-
mal trade-off between performance and power consumption. Total power of 328
to 428 µW is observed.
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