
Elastic Resource Provisioning System Based on OpenStack
Cloud Platform

Zheng Zhang(✉), Hao Xu, Ke Chen, and Pingping Shan

College of Software, Nanyang Institute of Technology, Nanyang 473000, Henan, China
sawest@163.com

Abstract. As open source private cloud platform, OpenStack provides basic
resource service which has features of stability reliability and security. Function
components of OpenStack platform were deployed and installed. Integrated basic
resource pool was built. Based on open API of platform, applying JAVA native
interface, elastic resource provisioning system was implemented which adops
software architecture of B/S. The system has functions of establishment distri‐
bution and real-time adjustment of dynamic resource. In order to manage elastic
resource of plateform expediently the system provides personalization module
and favorable user interface.

Keywords: Elastic resource · Cloud platform · OpenStack · B/S · JNI

1 Introduction to OpenStack

OpenStack is open-source software which provides a basic platform for deployment
cloud facilitates the deployment and management of virtual machine and serves as a
public/private cloud for virtual computing and storage. OpenStack mainly include Nova
virtual computing service, Swift storage service, Glance virtual image registration
distribution service [1–4].

1.1 System Structure of OpenStack

OpenStack cloud platform mainly includes seven components with different functions:
Nova computing component is the core of OpenStack platform and responsible for

computing part and implementing corresponding strategies. Other components are
scheduled through Nova component. Same as Amazon EC2 and RackspaceCloud‐
Servers, Nova component provides functions, including example operation, network
management, user control and access to the cloud by other items.

Swift object storage component is a distributed object storage component with
similar functions to Hadoop. In addition, Swift is used to store the image files to create
virtual machine.

Cinder block storage component adds enduring storage service for virtual machine.
Block storage component provides an infrastructure management data volume and
interacts with OpenStack computing service as well as offers data volume for examples.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
F. Chen and Y. Luo (Eds.): Industrial IoT 2017, LNICST 202, pp. 72–82, 2017.
DOI: 10.1007/978-3-319-60753-5_8



Quantum network component provides networking service, which means to create
IP address of virtual machine and manage the network system structure through API.

Keystone authentication component is responsible for access management and
service catalogue. Amongst, access management takes charge of authorization and
access establishment of users and involves concepts, including users, tenants and roles.
Besides, service catalogue can only be provided for users after each service of OpenStack
is registered in Keystone. Endpoint is the access point of the corresponding service.

Horizon component provides visualized GUI image interface and makes the users
to operate various resources of OpenStack platform [5–8].

1.2 Command Line Management Tool of OpenStack

OpenStack cloud platform has two different methods to manage the cloud resources.
The first one is to realize the management over cloud resources by Horizon, a GUI image
interface based on Web while the second one is to manage the resources by portals of
OpenStack command line.

(1) Check the OpenStack cloud platform service
nova-manage service list

(2) Create examples of virtual machine
nova boot [name of virtual machine] --flavor [type of virtual machine] --image [ID
of virtual machine image] --security-groups default-nic --net-id = [ID of the
network which the virtual machine belongs to]

(3) Stop, suspend and delete the virtual machine
nova stop [vm-name]
nova suspend [vm-name]
nova delete [vm-name]

2 System Design

Elastic resource allocation system is based on OpenStack cloud platform and realizes
JAVA localized encapsulation of open API interface as well as allocates various
resources in resource pool dynamically, which mainly include image management
module, virtual machine management module, network management module and tenant
information module, etc. in order to provide an excellent user interface.

2.1 System Software Structure

Elastic resource allocation system is divided into three layers. The bottom layer estab‐
lishes elastic resource pool through OpenStack cloud platform and provides infrastruc‐
ture service. The middle layer realizes the encapsulation of local components by using
the open API programming interface of OpenStack and provides functional support for
the upper layer. In addition, the upper layer realizes the management system of B/S
structure based on J2EE technical design as well as manages and allocates various
resources in resource pool. Figure 1 shows the system software structure.

Elastic Resource Provisioning System 73



Fig. 1. Elastic resource allocation system software structure

2.2 Scheduling of OpenStack Cloud Platform Resource Pool

OpenStack cloud platform is established on the basis of server cluster. Then, the hard‐
ware resources at the bottom layer are abstracted as logic resources and are responsible
for managing and scheduling virtual logic resources. The resource pool in the cluster
includes the sum of resources of all the computing joints in the cluster. The logic resource
pool develops API programming interface for the upper layer and provides transfer of
infrastructure.

Resource scheduling refers to allocate the M heterogeneous and available resources
to N mutually-independent application tasks in order to minimize the total task comple‐
tion time and make full use of the resources. Resource allocation serves as a key compo‐
nent of cloud computing and its efficiency directly influences the working performance
of cloud computing environment. The central controller of OpenStack, Nova is respon‐
sible for managing the resource computing of the whole cloud. Instead of providing any
virtual capabilities, Nova makes the interactions between Libvirt API and host of virtual
machine possible and provides external processing interface through Web service API.
OpenStack makes use of the management program to provide the corresponding abstract
relations between the application programs and the hardware. Therefore, a pool is
equipped behind the server, network or storage device of each virtual machine, which
makes the request response and resource allocation more flexible and effective [9].

Based on OpenStack open-source cloud platform framework, the functions of plat‐
form resource monitoring and dynamic resource scheduling are expanded into the
computing module, Nova in order to include the monitoring and scheduling functions
into this platform. Thus, corresponding function deployment can be accomplished when
the platform is being deployed. In addition, service-oriented concept is adopted to
manage the virtualized resources and realizes the optimal match between the physical
resources at the bottom layer and the services at the upper layer by combining the

74 Z. Zhang et al.



resource scheduling & allocation with service type and working load. Figure 2 shows
the design framework.

Fig. 2. Strategic framework of virtual resource scheduling

The scheduling algorithm locates all the virtual machines whose load is higher than
the upper threshold in the virtual machine cluster and adopts the optimal adaptive algo‐
rithm to find the physical machine whose physical resource load is the highest but does
not exceed the upper threshold for physical load after the scheduling process; then, the
virtual machine is transferred to this physical machine and both the resource vector
magnitude and the load of physical machine are updated.

2.3 Cluster Management Middleware

Multi-cluster management middleware is mainly responsible for shielding the multi-
computing cluster distribution of the bottom cluster layer. The platform management
layer transfers the middleware to accomplish resource integration and provides related
information about each sub-cluster or sub-platform managed by the platform when
operations, including virtual machine creation, storage management and information
collection, need to be carried out in order to realize the goal of scheduling all the
resources distributed across the whole platform during resource transfer.

Multi-cluster management middleware is a dynamic linkage module encapsulated
through JNI technique by developing API interface provided by OpenStack cloud plat‐
form. On the basis of infrastructure platform, multi-cluster management, resource
collection, storage service and virtual machine service are realized. In addition,

Elastic Resource Provisioning System 75



management middleware can not only transfer OpenStack platform resources but
simplify and encapsulate the transfer process in order to provide realization of functional
module for the application system at the upper layer and increase the flexibility and
scalability of elastic resource allocation system. The realization process includes
following steps:

(1) Receive the transfer request of functional module in elastic resource allocation
system.

(2) According to the request type, write the corresponding processing script, which
contains the resource scheduling command identified by OpenStack cloud platform,
into the memory and implement it.

(3) Cloud platform cluster makes corresponding disposals according to the command
and returns the results back to the middleware.

(4) Middleware converts the format of feedback data from cloud platform to send the
data in a format which complies with system transmission protocol to the system
module.

Table 1 shows the main contents encapsulated by JAVA localized middleware:

Table 1. Middleware interface encapsulation table

Name of encapsulation
interface

Name of functions transferred
by upper module

Middleware realizing function

Example of inquiring virtual
machine

private native String
novaListJNI()

JNIEXPORT jstring
JNICALL novaListJNI
(JNIEnv *, jobject)

Inquiry image private native String
novaImageListJNI ()

JNIEXPORT jstring
novaImageListJNI (JNIEnv *,
jobject)

Example of initiating virtual
machine

private native String
novaBootJNI (String flavorId,
String imageId, String name)

JNIEXPORT jstring
JNICALL novaBootJNI
(JNIEnv *, jobject, jstring,
jstring, jstring)

Example of stopping virtual
machine

private native void
novaSuspendJNI (String
instanceId);

JNIEXPORT void JNICALL
novaSuspendJNI (JNIEnv *,
jobject, jstring)

Example of deleting virtual
machine

private native void
novaDeleteJNI (String
instanceId);

JNIEXPORT novaDeleteJNI
(JNIEnv *, jobject, jstring);

Middleware is responsible for encapsulating the scheduling commands and
converting the format of data transmitted. The existence of middleware can greatly
reduce the coupling among the layers in software structure and provide convenience for
system function expansion in the future.

76 Z. Zhang et al.



2.4 Elastic Resource Allocation System

Elastic resource allocation system realizes the management over various resources in
cloud platform in modules and is mainly divided into five major modules: image
management module, virtual machine management module, network management
module, user information management module and auxiliary function module.
Amongst, the image module achieves the functions of creating images by image files,
viewing existing images and creating images by virtual machine snapshot; virtual
machine module achieves the functions of creating, initiating, stopping and deleting
virtual machine; user information module achieves the functions of importation, revision
and view of user information; network module achieves the functions of generating
floating IP and its binding with virtual machine; auxiliary function module achieves the
functions of server performance inspection and real-time synchronization of system
background data., etc.

The system background is realized by JAVA programming language and achieves
control over major computing joints in cloud platform by class function, RmtShellEx‐
ecutor through remote access.

2.4.1 Virtual Machine Management Module
Aiming at virtual machine resources, this module can realize the functions of virtual
machine creation by images, management and control of virtual machine as well as view
of virtual machine information.

(1) Creation of virtual machine. Select the type of image, set the configuration param‐
eters (memory size, CPU and hard disk) of the virtual machine and generate virtual
machines in batches.

(2) Management and control of virtual machine. Initiate, suspend, stop or delete desig‐
nated virtual machine resources according to ID, name and type of virtual machine.

(3) View of virtual machine information. View the information about existing virtual
machines in cloud platform, which mainly includes ID, name, status, network of
virtual machines and operations supported by virtual machines.

2.4.2 Image Management Module
Images are master files used to derive virtual machines in cloud platform and create
image files according to the standard image creation procedure for OpenStack cloud
platform:

glance add name=“win7” is_public=true container_format=ovf
disk_format=raw < win7.img

Image management module can upload, create, view images and make images by
virtual machine snapshot. Amongst, the snapshot function can use the storage of current
state of virtual machine to copy virtual machines with the same contents. Figure 3 shows
the snapshot function in image management module:

Elastic Resource Provisioning System 77



Fig. 3. Image management module snapshot function figure

2.4.3 Network Management Module
Each virtual machine operating in elastic resource allocation system corresponds to two
IPs, one fixed inner network IP and one floating IP. The floating IP needs to be bond
with virtual machine. Therefore, the network management module is responsible for
batch creation and binding of floating IP.

2.4.4 User Information Management Module
User information management module is responsible for batch creation, deletion, revi‐
sion and inquiry of user information in cloud platform. To facilitate the administrators
to add batch user information, the administrators can fill in user information according
to given format and put the information into an Excel sheet and then upload the sheet.
The basic information about the virtual machine bond to the user can be inquired about
in user information module.

2.4.5 Auxiliary Management Module
Auxiliary management module is responsible for viewing the operation state of server
background resources, including the utilization rate of CPU, occupation rate of memory
and utilization rate of exchange partition, etc. The auxiliary system administrators judge
the operation condition of server in order to create virtual machine rationally and allocate
corresponding hardware resources. Figure 4 shows the operation effect of auxiliary
module.

Fig. 4. Operation effect of auxiliary module

78 Z. Zhang et al.



3 Key Technologies for System Realization

3.1 OpenStack API Authentication and Request Workflow

Authentication is required when the system accesses the OpenStack services. Firstly,
authentication request should be sent to obtain the authentication token. Therefore, valid
certificate must be provided in order to request the authentication token. When the
system sends OpenStack API request, the token information is put into the X-Auth-
Token head of HTTP request message. The token has a valid term and will become
invalid after the term [10, 11]. OpenStack API authentication and request workflow
process is as follows (Table 2):

(1) Access the authentication service access point of cloud platform, request for the
authentication token. A valid certificate is included in the request sent, which
contains following request parameter sheet:
When the request is successfully sent, the server will return back an authentication
token.

(2) Place the token into the head of X-Auth-Token of HTTP request message to send
API request. Keep using this token to send API request until the operation is finished
or the server returns to 401Unauthorized [12, 13].

(3) When 401Unauthorized error occurs, please request for a new token.

Table 2. Request parameter of certificate table

Parameter Type Description
username (required) xsd:string Username. If you cannot provide username and

password, token must be provided
password (required) xsd:string Password of this user
tenantName (elective) xsd:string Name of tenant. Both tenant ID and name are elective but

cannot be used at the same time. If these two properties
are designated, the service will return 400 error request

tenantId (elective) capi:UUID ID of tenant. Both tenant ID and name are elective but
cannot be used at the same time. If these two properties
are designated, the service will return 400 error request.
If you do not know tenantId, you can send a “” as a request
for tenantID and gain this ID from the returned message

token (elective) capi:UUID Token. If you cannot provide token, user name and
password must be provided

3.2 Localized Interface Realization Technology

Localized interface is shortened as JNI (Java Native Interface) to provide API for realize
communications between JAVA language and other languages. In this system, the
virtual machine scheduling command in OpenStack cloud platform is encapsulated into
executable scripts and then stored into memory. The background of elastic resource
allocation system is realized by JAVA language, which adopts JNI technology to execute

Elastic Resource Provisioning System 79



the scripts in local servers and obtain relevant data to return back to system background.
Take the virtual machine initiation function for example [14], the realization steps are
as follows:

(1) Statically load the dynamic linkage library of localized interface encapsulation in
system background function module. The code is as follows:

static 
{ 
System.loadLibrary("novaList"); 
} 

(2) Declare localized realization method, transfer the localized realization. The code
is as follows:
private native String novaBootJNI (String flavorId, String imageId, String name);

(3) Accomplish localized realization in C language. The method is declared as follows:
JNIEXPORT jstring JNICALL Java_com_execute_ssh_ExecuteSSH_nova‐
BootJNI (JNIEnv * env, jobject jo, jstring flavorId, jstring imageId, jstring name)

4 System Performance Test

During performance test, electromagnetic calculation algorithm, FDTD algorithm is
operated on each virtual machine in elastic resource allocation system for performance
test. This algorithm possesses the features of medium communication amount and large
calculation amount and can carry out multi-core parallel calculation in a single machine
or among multiple machines through network connection, thus achieving the test on
calculation capability and network environmental calculation capability.

4.1 Calculation Performance Test for Single Virtual Machine

This test is carried out on the physical machine and the virtual machine created by elastic
resource allocation system respectively. Table 3 shows the testing hardware configura‐
tion environment.

Table 3. Single-point test environment

Resource type Resource name Description Quantity
Physical resource DELL workstation Octa-core CPU,

16 GB memory
1

Platform resource Platform virtual
machine

Octa-core VCPU,
16 GB memory

1

FDTD algorithm is used in these two environments for four calculations respectively.
Table 4 shows the calculation results.

80 Z. Zhang et al.



Table 4. Single-point test result

Resource type First test
results

Second test
result

Third test
result

Fourth test
result

Average time

Physical
resources

3997 s 4003 s 3978 s 3877 s 3963.75 s

Platform
resource

4015 s 4211 s 4008 s 3997 s 4057.75 s

The average of the results of four calculations is obtained and thus the calculation
time under platform virtual machine environment is about 1.02 times the calculation
time of physical machine. The tests show that the operation performance in virtual
machine environment is close to the performance of physical machine. Through platform
automatic task operation and resource monitoring, the users can obtain the flexibility in
operation and environment management with low performance loss.

4.2 Calculation Performance Test for Multiple Virtual Machine

This test adopts four sets of machines for calculation of FDTD cases. The testing envi‐
ronment for each set is the same as the environment in single machine test. Likewise,
four calculations are carried out in these two environments respectively. Table 5 shows
the calculation time results:

Table 5. Multi-point test result

Resource type First test
results

Second test
result

Third test
result

Fourth test
result

Average time

Physical
resource

4181 s 4103 s 4456 s 4480 s 4305 s

Platform
resource

4691 s 4589 s 4983 s 5016 s 4819.75 s

Similarly, the average of the results of four calculations is obtained and thus the
calculation time for virtual resources provided by the platform is about 1.12 times the
calculation time of physical machine. The original calculation time is 89.3% of the
calculation time under platform environment. Therefore, it can be seen that the perform‐
ance loss of virtual machine environment provided by the platform is only about 10%.
In addition, it can be seen that after the network delay is introduced, the calculation time
of both the physical machine and the virtual machine environment increase. Although
the time increases, this distributed calculation environment provides stronger calculation
environment, which actually solves a more complex problem and obtains higher calcu‐
lation precision. In the meanwhile, the calculation environment provided by the platform
greatly simplifies the deployment and management of distributed calculation environ‐
ment and facilitates the users.

Elastic Resource Provisioning System 81



5 Conclusion

Elastic resource allocation system realizes the scheduling and management of virtual
resources based on OpenStack platform. Its main functions include virtual machine
management and control, network resource management, user information management
and image module management. The system provides humanized image interface and
allocates the virtual resources flexibly and efficiently for the users.

References

1. Fei, X., Jing, Y., Liming, L.: Design and implementation of computer lab self-service platform
based on openstack. Comput. Modern. 7, 52 (2013)

2. Mingli, W., Tianhong, R., Yebai, L.: Application and research of resource management
technology based on openstack private cloud platform. Ind. Technol. Innov. 2(3), 334–341
(2015)

3. Shaoka, Z., Liyao, L., Xiao, L., Cong, X., Jiahai, Y.: Architecture and scheduling scheme
design of tsinghua cloud platform based on openstack. J. Comput. Appl. 33(12), 3335–3338,
3349 (2013)

4. Jinpeng, H., Qin, L., Chunming, H.: Research and design on hypervisor based virtual
computing environment. J. Softw. 18(8), 2016–2026 (2007)

5. Xianfeng, S., Junchuan, J., Xiaojun, Z.: Private cloud APCS platform design based on
virtualization technology. Comput. Eng. 38(8), 200–212 (2011)

6. Zhao, W.M., Wang, Z.L., Luo, Y.W.: Dynamic memory balancing for virtual machines. ACM
SIGOPS Oper. Syst. Rev. 43(3), 37–47 (2009)

7. Zhang, J., Gu, Z., Zheng, C.: Survey of research progress on cloud computing. Appl. Res.
Comput. 27(2), 429–433 (2010)

8. Wensheng, Z.: Application research of software virtualization in computer lab. China Electr.
Power Educ. 8, 113–114 (2012)

9. Mell, P., Grance, T.: The NIST definition of cloud computing (draft). NIST 800(145), 7 (2011)
10. Zhuhua, W.: Analysis of Core Technologies of Cloud Computing. Posts & Telecom Press,

Beijing (2011)
11. Qiang, X., Zhenjiang, W., Computing, C.: Application Development Practices. China

Machine Press, Beijing (2012)
12. OpenStack. OpenStack Documentation [EB/OL]
13. http://docs.openstack.org. Accessed 16 Sep 2012
14. Peng, L.: Cloud Computing, 2nd edn. Publishing House of Electronics Industry, Beijing

(2011)
15. Hua, Z.: Application of cloud computing technology in construction of university green

computer labs. Value Eng. 11, 180–181 (2012)

82 Z. Zhang et al.

http://docs.openstack.org

	Elastic Resource Provisioning System Based on OpenStack Cloud Platform
	Abstract
	1 Introduction to OpenStack
	1.1 System Structure of OpenStack
	1.2 Command Line Management Tool of OpenStack

	2 System Design
	2.1 System Software Structure
	2.2 Scheduling of OpenStack Cloud Platform Resource Pool
	2.3 Cluster Management Middleware
	2.4 Elastic Resource Allocation System
	2.4.1 Virtual Machine Management Module
	2.4.2 Image Management Module
	2.4.3 Network Management Module
	2.4.4 User Information Management Module
	2.4.5 Auxiliary Management Module


	3 Key Technologies for System Realization
	3.1 OpenStack API Authentication and Request Workflow
	3.2 Localized Interface Realization Technology

	4 System Performance Test
	4.1 Calculation Performance Test for Single Virtual Machine
	4.2 Calculation Performance Test for Multiple Virtual Machine

	5 Conclusion
	References


