
Optimization Bottleneck Analysis
in GPU-Based Aiming at SAR Imaging

Wang Shi-Yu(&), Zhang Sheng-Bing, An Jian-Feng,
Huang Xiao-Ping, and Wang Dang-Hui

School of Computer Science,
Northwestern Polytechnical University, Xi’an 710129, China

onion0709@mail.nwpu.edu.cn

Abstract. Application Defect induced by GPU Aiming at SAR Imaging are
studied. It is the first time the issue of application defect induced by GPU is
addressed in SAR field. In GPU-based SAR imaging system, application defect
induced by resources competition can significantly decrease the granularity of
parallelism. To solve this problem, the GPU-based SAR imaging system with
CUDA is firstly modeled. Secondly, conditions of parallel granularity loss rate
by using CUDA are obtained based on time output feedback scheme. Thirdly,
more importantly, find the difficulties and bottlenecks in the optimization of
SAR imaging operation is proposed according to the measured conditions of
parallel granularity loss rate. Finally, optimization bottleneck analysis through
FFT function and linear matrix interpolation scheme, and numerical simulations
are made to demonstrate the effectiveness of the proposed scheme.

Keywords: GPU � SAR imaging � Parallel computing � Optimization
bottleneck analysis

1 Introduction

SAR (Synthetic Aperture Radar) remote sensing data, with its unique advantages is
gradually used in the field of earth observation. The amount of data contained in a SAR
image is usually very large. Considering that the traditional serial processing method
has a certain lag, in practical application, operation rate is one of the key factors of SAR
image processing.

The current SAR imaging processing algorithms mainly include RDA algorithm,
CS (Scaling Chirp) algorithm, and the xKA algorithm. The three algorithm flowcharts
are shown in Fig. 1.

At present, most of the SAR imaging systems based on the CPU of the personal
computer, workstation or large computing server, are carried out on such hardware in
the system. Besides, in order to make the CPU-based imaging system be fully applied
and further accelerate the speed of SAR echo data processing, the design of the soft-
ware architecture also needs a lot of human input.

CUDA (Compute Unified Device Architecture) providing a parallel programming
model and software environment will fully mobilize the powerful parallel computing

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
F. Chen and Y. Luo (Eds.): Industrial IoT 2017, LNICST 202, pp. 43–52, 2017.
DOI: 10.1007/978-3-319-60753-5_5



power of GPU, so that GPU can play its inherent advantages in solving complex
computational problems. Hierarchical management is shown in Fig. 2.

With its rapid development, GPU is widely used to solve the problem of the
calculation of massive remote sensing data processing [3]. However, using GPUs for
scientific computing has been mostly dominated by those with needs for a large number
of tightly-coupled floating-point operations such as the n-body problem [4].

At present, the research on the acceleration of SAR imaging is mainly reflected in
the improvement of the SAR algorithm [6] and the efficient application of the CUDA
architecture [7–9]. In this paper, the CUDA architecture is used to accelerate the SAR
imaging, identify the bottlenecks in the process of acceleration, and point out the focus
of the work for future SAR imaging.

The paper is structured as follows: The second part analyzes the specific algorithm
of SAR imaging and the details of the formula. And the parallelism of the SAR
imaging arithmetic unit is analyzed and designed in the third part, while the fourth part
presents the experimental data and the parallel bottleneck analysis. The conclusion is
given in the fifth part.

2 The Analysis of SAR Imaging Arithmetic Operator

From the previous description, SAR imaging steps can be summed up, although the
imaging algorithms have different characteristics and advantages, but each SAR
imaging algorithm basically contains FFT (IFFT), phase multiplication and interpola-
tion of these three kinds of computing components. Most of the computing cost also
comes from the three arithmetic units (Calculation Sample: 1024 � 1024 SAR image
data matrix).

Fig. 1. Three kinds of SAR algorithm flow Fig. 2. CUDA storage model

44 W. Shi-Yu et al.



2.1 FFT (IFFT) Arithmetic Operator

N finite length sequence of X (n) DFT and IDFT operation process is as follows
(Table 1):

XðkÞ ¼ DFT ½xðnÞ� ¼ 1
N

XN�1

n¼0

xðnÞWnk
N k ¼ 0; . . .;N� 1 ð1Þ

xðnÞ ¼ IDFT ½XðkÞ� ¼ 1
N

XN�1

n¼0

XðkÞW�nk
N n ¼ 0; . . .;N� 1 ð2Þ

Wnk
N ¼ expð�2nkpi=NÞ ð3Þ

2.2 The Interpolation of Arithmetic Operator

SAR image processing achieves the sample position mainly by the interpolation. In
accuracy and computation requirements, 8 point sinc interpolation is generally used.
What’s more, Sinc interpolation method concerns the use of the original function y in
the value of the other points, weights sinc function, and gets the value of Y (x) at X.

The interpolation operation procedure is as follows:

yðxÞ ¼
X1

i¼�1
yðiÞ sin cðx� iÞ ð4Þ

sin cðxÞ ¼ sinðpxÞ
px

ð5Þ

Therefore, it is necessary for sinc interpolation truncation, the P sinc interpolation,
and interpolation formula for range curvature correction (Table 2):

s
0 ðm; nÞ ¼ sðm; nþDnÞ ¼

Xp=2�1

i¼�p=2

sðm; nþ n0 þ iÞ sin cðfranc� iÞ: ð6Þ

Table 1. DFT calculating amount

Amount of computation N-point DFT Complex multiplication Complex addition

DFT[x(n)] N-point X (k) N2 N (N – 1)

Table 2. Interpolation calculating amount

Amount of computation N-point Y (X) Sine calculation Complex multiplication

Y (x) 8-pointX (k) 8 N 8 N

Optimization Bottleneck Analysis in GPU-Based Aiming 45



2.3 Phase Multiplication Arithmetic Operator

In the process of the CS imaging algorithm, the three phase multiplication algorithm is
included. The signal in the form of Doppler domain is as follows:

S1 ¼ ðft; s; rÞ

¼ CGð� rkf1
2v2

Þmð� 2Rf ðft; rÞ
c

Þ expf�jpKmðft; rÞ�

½s� 2Rf ðft; rÞ
c

�2g � expf�j
4pr
k

cðftÞg

ð7Þ

The first phase is multiplied in the azimuth FFT, the completion of the CS is
realized by the RCMC operation:

S2ðfs; s; rÞ ¼ S1ðfs; s; rÞ � H1ðfs; s; rÞ: ð8Þ

In Formula (8):

H1ðft; s; rÞ ¼ expf�jpKmðft; rref Þ � Csðs� sref Þ2g: ð9Þ

sref ¼ 2
c
rref ½1þCsðftÞ� ð10Þ

sref is generally used as the center of the imaging and mapping band as well as a
fixed reference distance.

The second phase is multiplied by the distance to FFT, as well as the completion of
RCMC, SRC and distance compression:

S3ðft; fsÞ ¼ S2ðft; fsÞ � H2ðft; fsÞ: ð11Þ

In Formula (11):.

H2ðft; fsÞ ¼ expf�jp
f 2s

Kmðft; rref Þ½1þCsðftÞ�g expfj
4p
c
rref CsðftÞfsg: ð12Þ

Third phase multiplication in the distance to IFFT after the completion of the
azimuth compression and phase correction:

S4ðft; sÞ ¼ S3ðft; sÞ � H3ðft; sÞ: ð13Þ

In Formula (13) (Table 3):

H3ðft; sÞ ¼ expfj 2p
k
cs � cðftÞþ jDg: ð14Þ

46 W. Shi-Yu et al.



D ¼ pKm
Csðs� sref Þ2

1þCs
ð15Þ

3 Parallel Architecture for Computing Components

Multiple FFT parallel computing, data exist before and after dependence [12, 13].
Therefore, in the calculation process, FFT calculation process in each block there is a
pipeline to wait for the calculation process [14]. As shown in Fig. 3.

Interpolation and phase multiplication calculation no data dependencies. Therefore,
Parallel computation of multi channel block, multiple threads can be calculated in
parallel. As shown in Fig. 4.

4 Experimental Results and Analysis

4.1 Experimental Computing Platform

(1) Hardware Platform:

CPU Model: Intel(R) Core(TM) i5-3230M;
CPU Dominant Frequency: 2.6 GHz;
System Memory: 8.00 GB;
GPU Model: NVIDIA GeForce 840M;
GPU Dominant Frequency: 1.12 GHz;
The Number of SM: 3;
The Number of SP: 3128;
Memory Interface: 64-bit;

Table 3. Phase multiplication calculating amount

Amount of computation N-point Y (X) Complex multiplication

Y (x) N-point X (k) N

Fig. 3. FFT multi path parallel computing
architecture

Fig. 4. Interpolation, Phase multiplication par-
allel computing architecture

Optimization Bottleneck Analysis in GPU-Based Aiming 47



Memory Bandwidth: 14.4 GB/s;
Memory Dominant Frequency: 900 MHz;

(2) Software Platform

Operating System: Microsoft Windows 8.1;
Test Platform: Visual Studio 2013;
CUDA v7.5;
Calculation Sample: 1024� 1024 SAR image data matrix

4.2 Computational Optimization Ratio

See (Table 4).

4.3 CUDA Parallel Acceleration Bottleneck Analysis

If the data matrix is at one end of GPU, data first entered the memory global, when
CUDA starts the CPU computing core. And then, the data is written to memory share,
and GPU operations on the data in share memory. The data migration generated a
corresponding time, but GPU inside the SM did not appear to wait for the phenomenon
of hunger, and the full load of work is always kept. Therefore, the data migration in the
chip fails to affect the calculation of the acceleration optimization. However, there are
only three SMs in the GPU.

Table 4. GPU/CPU speedup ratio

Arithmetic unit CUDA mode Sine calculation CPU mode

FFT 7.7 ms 2.665 s 346.1
Interpolation 7.9 ms 1.8 s 227.8
Phase multiplication 15 ms 0.055 s 3.67

Fig. 5. SM resource utilization

48 W. Shi-Yu et al.



The internal SM of GPU is in full load working state, which is shown in Fig. 5. The
utilization rate of SM has reached 100%, and there is no waiting for data. Therefore, the
data migration in the chip does not affect the optimization efficiency of the operation
(Fig. 6).

Throughout the clock cycle, more than 80% of the clock cycle is executed in kernel,
so there is no reason for warps to block the next instruction, which is shown in Fig. 7.

Both the SAR imaging algorithm and parallel computing have been developed
towards a mature phase, and plenty of research results have been obtained in these
fields [23, 24]. CUDA program contains three kinds of executive unit, namely thread,
block and grid. In CUDA programming, a grid is divided into a number of blocks, and
then, a block is divided into multiple threads. The division is based on the task
characteristics and the hardware characteristics of GPU itself. The division of tasks will
also affect the final implementation of the results (Figs. 8 and 9).

In GPU hardware resources, SP (streaming processor) is the most basic processing
unit of GPU, and all the operations will be implemented on the SP. Besides, GPU in
parallel computing will be ultimately reflected in a number of SP parallel computing.
Any SP with some allocation of resources, including storage, memory and register,
consists of a SM (streaming multiprocessor). The current GPU contains a limited

Fig. 6. Execution dependency causes proportion of WarpCycles stall

Fig. 7. No eligible of warp issue efficiency

Optimization Bottleneck Analysis in GPU-Based Aiming 49



number of SM and SP. When taking GPU as an example in this experiment, the GPU
contains three SMs, each of which contains 128 SPs.

In the process of executing the CUDA program, a SM performs a block task, and at
the same time, a SP performs a thread task. However, in the execution program of
GPU, the warp is considered as the unit, and a warp is a thread group that contains 32
threads.

In the parallel processing SAR image data matrix and the operation process of three
kinds of computing components, the task is divided into 1024 blocks, and the operation
of each point is assigned to 1024 threads. When taking the FFT operation of the SAR
image matrix as an example, each line of data is assigned to a block which consists of
1024 threads, and each thread performs the FFT operation of the corresponding point in
the row data.

The compute-resource allocation process of the parallel algorithm in GPU is ana-
lyzed, and at the same time, there will be 1024 blocks, and among them, each block
contains 1024 threads to be executed. As above, the parallel algorithm requires 1024
SM processing corresponding to the 1024 blocks, Each SM requires 1024 SPs corre-
sponding to each of the 1024 threads in the block. Only to meet the needs of these

Fig. 8. Instructions per warp

Fig. 9. Warps launched

50 W. Shi-Yu et al.



hardware resources, the algorithm can be truly parallel computing. However, from the
GPU resource list, SM and SP resources in GPU are relatively limited, and the
experiment with the GPU contains 3 SMs, and each SM contains 128 SPs. Therefore,
in the implementation of the CUDA program, only three blocks can be executed in
parallel at one time. The CUDA program contains 1024 blocks, such as the 3 SMs to be
seen as a computing unit, and besides, every 3 block is considered as a unit. If you need
to complete 1024 blocks, the 3 SMs sequence needs to be conducted for 342 times.
1024 blocks are actually calculated in a serial manner 342 times. Each block contains
1024 threads, while each SM in the SP executes a thread, but each SM contains 128
SPs. Similarly, with the 128 SPs as a computing unit and 128 threads as a pending
computing unit, the 1024 threads need to be calculated in a serial mode eight times.
Therefore, due to the limitation of GPU’s own hardware resources, the parallel opti-
mization efficiency of the SAR image matrix processing program is of great limitation.

SFU, as a special function of SM can achieve six kinds of transcendental functions,
including common sine, cosine, logarithm, exponential, reciprocal and square root.
However, when each thread needs to use SFU, each of the four threads requires a serial
use of SFU. it seriously affects the parallel optimization efficiency between threads. For
example, in the process of interpolation, as shown in Table 5, the sine and the recip-
rocal operation are involved. In this case, each of the four interpolations of the thread
must be done after the serial operation of the sine and the countdown to complete the
entire interpolation algorithm. What’s more, this process turns the parallel operation
between threads into the serial operation between threads, and the advantage of CUDA
parallel computing is lost.

5 Conclusion

In GPU-based SAR imaging system, application defect induced by resources compe-
tition can significantly decrease the whole system performance. To solve this problem,
the SAR imaging system is firstly modeled on CPU and GPU in view of the idea that
CPU rate can be replaced by GPU, and the speedup ratio of system with GPU-based is
also given. Then, the principle of GPU-based that the parallel granularity loss rate is
analyzed, and the deceleration ratio of SAR imaging with CUDA is also given. Finally,
the bottleneck of GPU-based SAR imaging system is analyzed, and the bound on SAR
imaging speedup ratio that GPU-based without increasing power consumption is
proposed. The effectiveness of the proposed inference is demonstrated by numerical
simulations. It is shown that GPU-based SAR imaging system with resource bottleneck
operation rate can not be further improved.

Note that only three key operating cells in multiple SAR imaging algorithms in the
paper, however, similar analysis can be made of other operating cell in SAR imaging

Table 5. Interpolation operation time in different degree of parallelism

Degree of parallelism 1-thread 2-threads 4-threads 8-threads 1024-threads
Operation time 6.6 ms 6.7 ms 6.6 ms 6.6 ms 7.7 ms

Optimization Bottleneck Analysis in GPU-Based Aiming 51



algorithm. The scheme proposed in this paper achieve heuristic result has some values
of guidance in acceleration research of SAR Imaging.

How to increase the calculating speed in real-time SAR imaging is an open
problem. In addition, application on GPU-based has little room for improving per-
formance more. For future work, we plan to deeper investigation of arithmetic unit
oriented to application of SAR imaging.

References

1. Larsen, E.S., Mc Allister, D.: Fast matrix multiplies using graphics hardware. In: 2001
ACM/IEEE Conference on Supercomputing (CDROM). ACM Press (2001)

2. General-Purpose Computation Using Graphics Hardware. http://www.gpgpu.org/
3. YANG, C., Wu, Q., Hu, H., Shi, Z., Chen, J., Tang, T.: Fast weighting method for plasma

PIC simulation on GPU-accelerated heterogeneous systems. J. Cent. South Univ. 20, 1527–
1535 (2013)

4. NVIDIA CUDA: Compute Unified Device Architecture http://developer.nvidia.com/object/
cuda.html

5. Li, Z., Wang, J., Liu, Q.H.: Frequency-domain backprojection algorithm for synthetic
aperture radar imaging. IEEE Geosci. Remote Sens. Lett. 12(4), 905–909 (2015)

6. Sheng, H., Wang, K., Liu, X., Li, J.: A fast raw data simulator for the strip map SAR based
on CUDA via GPU. In: IGARSS, pp. 915–918 (2013)

7. Dąbrowski, R., Chodarcewicz, Ł., Kulczyński, T., Niedźwiedź, P., Przedniczek, A.,
Śmietanka, W.: Accelerating USG image reconstruction with SAR implementation on
CUDA. In: Kim, T., Cho, H., Gervasi, O., Yau, S.S. (eds.) FGIT 2012. CCIS, vol. 351,
pp. 316–329. Springer, Heidelberg (2012). doi:10.1007/978-3-642-35600-1_47

8. Denham, M., Areta, J., Tinetti, F.G.: Synthetic aperture radar signal processing in parallel
using GPGPU. J. Supercomput. 72(2), 1–17 (2015)

9. Long, H.: Research and implementation of synthetic aperture radar parallel imaging
algorithm. Master thesis, University of Electronic Science and Technology (2001)

10. Benson, T.M., Campbell, D.P., Cook, D.A.: Gigapixel spotlight synthetic aperture radar
backprojection using clusters of GPUs and CUDA. In: 2012 IEEE Radar Conference
(RADAR), pp. 0853–0858. IEEE (2012)

11. Kong, F., Zhao, J., Yue, B.: Research on parallel processing of SAR imaging algorithm. In:
Proceedings of the 2nd Asian-Pacific Conference on Synthetic Aperture Radar, pp.784–787
(2009)

12. Swarztrauber, P.N.: FFT algorithms for vector computers. Parallel Comput. 1, 45–63 (1984)
13. Cooley, J., Tukey, J.: An algorithm for the machine calculation of complex Fourier series.

Math. Comput. 19(90), 297–301 (1965)
14. Ogata, Y., Endo, T., Maruyama, N., Matsuoka, S.: An efficient, model-based CPU-GPU

heterogeneous FFT library. In: Proceedings of the 17th International Heterogeneity in
Computing Workshop (in conjunction with IPDPS 2008) (2008)

15. Solimene, R., Catapano, I., Gennarelli, G., Cuccaro, A.: SAR imaging algorithms and some
unconventional applications: a unified mathematical overview. IEEE Signal Process. Mag.
31(4), 90–98 (2014)

16. Capozzoli, A., Curcio, C., Liseno, A.: Fast GPU-based interpolation for SAR back
projection. Progress Electromagn. Res. 133, 259–283 (2013)

52 W. Shi-Yu et al.

http://www.gpgpu.org/
http://developer.nvidia.com/object/cuda.html
http://developer.nvidia.com/object/cuda.html
http://dx.doi.org/10.1007/978-3-642-35600-1_47

	Optimization Bottleneck Analysis in GPU-Based Aiming at SAR Imaging
	Abstract
	1 Introduction
	2 The Analysis of SAR Imaging Arithmetic Operator
	2.1 FFT (IFFT) Arithmetic Operator
	2.2 The Interpolation of Arithmetic Operator
	2.3 Phase Multiplication Arithmetic Operator

	3 Parallel Architecture for Computing Components
	4 Experimental Results and Analysis
	4.1 Experimental Computing Platform
	4.2 Computational Optimization Ratio
	4.3 CUDA Parallel Acceleration Bottleneck Analysis

	5 Conclusion
	References


