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Abstract. Wireless rechargeable sensor network can effective prolong the
network lifetime through energy replenishment. However, how to schedule the
energy replenishment still need to be carefully designed. In this paper, we
proposed a novel route scheduling method for wireless sensor network to
maximize network utility. Experiments results indicate that our method can
more effective replenish energy than the compared method.
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1 Introduction

With the rapid development of science technology, Internet of Things have caused
more and more people’s attention, such as wireless sensor networks (WSNs). WSNs
mainly in the applications of surveillance and monitoring including environment
sensing, nature disaster, target- tracking, structural health monitoring, etc. [1–3]. The
traditional sensors [4–6] are mainly powered by batteries, but their limited battery
capacity limits the large-scale deployment of wireless sensor networks. In other words,
wireless sensor networks in the transmission process could not continue operations.
Although there have been proposed energy saving method on the sensor in the past
decade years, wireless sensor networks still left some problems and encountered bot-
tleneck in the real deployments of WSNs and in wireless data communications.

To alleviate the limited capacity problem, researchers proposed to the renewable
energy technology, which enables sensors to harvest ambient energy from their sur-
roundings such as solar energy, wind energy, etc. [7–9]. However, the temporally–
spatially nature of renewable energy makes it difficult to predict sensor capture rates.
For example, it is shown that the difference of energy generating rates in sunny, cloudy
and shadowy days can be up to three orders of magnitude in a solar collection system
[10]. Therefore, the sensor can be charged so that the sensor has a stable energy. The
recent breakthrough in the wireless power transfer technique based on strongly coupled
magnetic resonances has drawn plenty of attentions [11]. Wireless power transmission
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technology is a promising technology to stable and high recharge rate wireless trans-
mission power by Kurs et al. [12, 13].

Particle swarm optimization (PSO) is a population-based adaptive search opti-
mization technique based on a simplified model of animal social behavior, first pro-
posed by Kennedy and Eberhart in 1995. Such as fish school and bird populations. PSO
was originally aimed at single-objective continuous optimization problem, it is a
population-based optimization algorithm [14]. The basic principle of the PSO algo-
rithm that each bird is abstracted as a particle, and the optimization results corre-
sponding to the particle in space exploration position [14]. Therefore, the introduction
of PSO algorithm can greatly improve the performance of WSN in the aspects of load
balance, energy consumption and so on. PSO works with a population of particles.
Particles move in the search space to find optimal solution. A particle adjusts its
velocity before its movement according to some simple rules. Make use of the best
position visited by each particle and the global best solution produced by the swarm to
drive particles to a promising region.

In the paper, we propose multiple mobile wireless chargers to replenish sensors in a
large scale WSN with wireless power transfer for a monitoring, making no sensor will
run out of energy. We consider the flexibility of sensor energy charging mode, the
sensor is charged by mobile Charger for on-demand routing and data routing and
energy supplement. In order to avoid the termination of energy, we provide a method to
transmission the energy from a mobile charger.

The rest of this paper is organized as follows. Section 2 reviews related work.
Section 3 presents system model and notions. Section 4 proposes method. Section 5
evaluates the algorithm performance, and Sect. 6 concludes the paper.

2 Related Work

In order to prolong the service lifetime of the network, mobile chargers be used in
wireless sensor networks. A few studies have been conducted to explore mobile
chargers to replenish energy to sensors. Most existing studies considered sensor energy
recharging and data collection routing jointly. For instance, Gu et al. [15] considered
the problem of mobile strategy affects the survival time of direct network, which the
author assumes the network is divided into several regions, and the cluster head is
selected in the interior each area. The mobile node collects data directly from the
cluster head. Its energy balance can be maintained by multi hop transmission. How-
ever, it will cause some data overflow and additional communication delay. Zheng
et al. [16] designed a path selection probabilistic model and used the ACO algorithm to
find the optimal path from the processing node to the destination node. But complexity
of their proposed ACO algorithm is relatively high.

Guo et al. [17] proposed a framework for wireless energy supplements and mobile
data collection based on the anchor point, considering that all kinds of capacity con-
sumption and time vary with energy supplementation. In the energy balance, energy
conservation and link capacity constraints, the problem of energy charge is considered
to be the maximize utility. Zhao et al. [18] considered the combination of mobile data
optimization and energy charging to achieve the energy complements range and latency
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data collection by using mobility. They have developed a charging and data collection
problem as a way to adjust the data rate, flow routing, and link scheduling issues to
achieve maximum network utility.

Similarly, Yang et al. [19] proposed a sleep multi-path routing protocol to save
energy in directional diffusion by using desired path success and path dependency
requirements to limit the number of active alternative paths. To improve the energy
efficiency by reducing the length of the alternative paths, Ganesan et al. [20] proposed
the braided multi-path protocol. In this protocol, rather than building completely dis-
joint paths, partially disjoint paths are constructed. In this protocol, instead of building
a complete disjoint path, a partially disjoint path is constructed, which is a path-based
failure that may fail on the edge while other edges are still available. Liu et al. [21]
proposed topology control method for a multichannel multi-radio wireless network
using directional antennas.

There are a few recent works using on-demand sensors to supplement the energy.
Xu et al. [22] proposed a method to schedule K mobile chargers to add energy. The
maximum charge time in the K charger is minimized for live sensors. Ren et al. [23]
have recently investigated the deployment of a single mobile charger to charge under
distance-constrained sensors. Approximate algorithm for the minimization of network
utility [24] is proposed by Liang et al. By means of a charging sensor, under the energy
constraints of each moving vehicle, moving vehicles are used to charge a set of charged
sensors. For our work, we also take into accounted to minimize the total travel multiple
mobile charger to maintain the permanent operation of the sensor network.

3 Problem Statement

How to schedule the charging vehicle to replenish the network directly affects the
service life of the whole wireless sensor network. When there is only one charging
vehicle in the entire network, it needs to traverse all sensor nodes in the network and
add energy to them. Therefore, it is very important to choose the best path to traverse
the network. We first assume that all sensors have reached the threshold of energy
consumption, and they need for additional. And then we also assumed that the charging
vehicle with infinite energy to support it to traverse all nodes and charge them, such as
in Fig. 1. Through the above assumptions, the charging problem of wireless sensor
network can be converted into Traveling Salesman Problem. Finally, the algorithm for
dealing with this problem is proposed.

We can consider this problem as optimization problem. Let S ¼ s1; s2; . . .; sNf g be
the set of sensors. We define a graph G ¼ V;Eð Þ to represents the network, where V
refers to the set of sensors and the base station (v0) and E denotes the paths between
those sensors. There is an edge (i, i + 1) between sensors i and sensor i + 1, 8i 2 V.
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Energy required by sensor node i is defined as ei. pi;iþ 1 is the energy consumed by
a charging vehicle while move from sensor node i to sensor i + 1. Binary variable ai
equals 1 if sensor node i is recharged by charging vehicle; otherwise, it is 0. And binary
variable bi;iþ 1 equals 1 if the charging vehicle is move from sensor i to sensor i + 1;
otherwise, it is 0. We define the total energy consumption of charging car during a
charging tour as Ec. Table 1 lists the definitions of all notations.

We aim to find the maximum charging efficiency of the charging vehicle under the
premise of ensuring the normal operation of sensor network, i.e., the ratio of the total
energy demand of sensors to energy capacity of charging vehicle.

Fig. 1. Scheduling of recharging route for a wireless sensor network

Table 1. The parameters of network

Parameter Value

Number of sensors N 20, 40, 60, 80, 100
The Upper limit of Iteration times 5000
Inertia weight w 0.5 f
Side length of sensing field L 200
Supply voltage 3 V
Charge threshold Ec 30
Consumption of Recharging Vehicles Em 0.56 J/m
Speed of Recharging Vehicles Vr 1 m/s
Magnification of

P
1=RE 500
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Maximize:

XN

i¼0
aiei=Ec ð1Þ

Subject to:

XN

i¼0
bi;iþ 1pi;iþ 1 [ 0; 8i 2 s ð2Þ

XN

i¼0
aiei þ

XN

i¼0
bi;iþ 1pi;iþ 1 �Ec; 8i 2 s ð3Þ

ai;iþ 1 2 f0; 1g; 8i 2 s ð4Þ

bi;iþ 1 2 f0; 1g; 8i 2 s ð5Þ

In the above statement, constraint (2) shows that the charging vehicle moves at least
once during a charging cycle. Constraint (3) ensures that the capacity of charging
vehicle should not be depleted. Constraints (4) and (5) indicates that ai and bi;iþ 1 are all
binary variables.

4 Proposed Method

4.1 Particle Swarm Optimization Algorithm

Particle swarm optimization has been used to solve resource assignment and network
deployment [25, 26]. In the PSO, particle swarm search in an n dimensional space. In
this space, each particle’s position represents a solution to the problem. Particles search
for new solutions by adjusting the position X. Every particle can remember their best
solution, denoted as Pid. The best position of the particle swarm passed which is also
the optimal solution to the current search, denoted as Pgd. Each particle has a velocity,
denoted as V.

V
0
id ¼ xVid þ g1randðÞðPid � XidÞþ g2randðÞðPgd � XidÞ ð6Þ

The Vid means the velocity of the i particle at the d dimension. x is the inertia
weight. g1, g2 is the important parameters to adjusting Pid and Pgd. randðÞ is a random
number generating function. In this way, we can get the next position of the particle.

X
0
id ¼ Xid þVid ð7Þ

4.2 Charging Utility

We consider a modified PSO algorithm in this situation that there is only one
recharging vehicles charging for the whole sensor cluster. For simplicity, we assume
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that all sensors have got the threshold of energy consumption so they all need addi-
tional energy. The recharging vehicle must pass all nodes to charge for all sensor
nodes. In addition, it is assumed that the recharging vehicle has unlimited energy, it has
enough energy to support itself to travel all nodes and charge all nodes. So the wireless
charging sensor network can be converted into the TSP traveling salesman problem.

As the remaining energy of each sensor is different and the distance is also different.
When recharging vehicle moves, it needs consume energy. Therefore, we define a
charging utility criterion to measure the charging utility:

f ðiÞ ¼ @
1
REi

� em � Di;j; i; j ¼ 0; 1; 2; � � � ; n; i 6¼ j ð8Þ

REi is the residual energy of sensor. em is the energy consumption when recharging
vehicle drives one unit meters. Di;j is the pseudo Euclidean distance between sensor i
and sensor j. @ is the constant coefficient.

When REi is small, the energy of sensor i is lower. As the result, the 1
REi

is bigger,

so the charging priority of the sensor i is higher and the charging utility is better. When
Di;j is smaller, the energy the recharging vehicle consumes when it is moving is also
less. In the contrary, the charging utility is better. Therefore, the standard can be well
described for the charging utility.

We know the charging utility function of each sensor. According to this function,
the fitness of each particle can be obtained:

fitnessðkÞ ¼
X

ð@ 1
REi

� em � Di;iþ 1Þ; i ¼ 0; 1; 2; � � � ; n; k ¼ 0; 1; 2; � � � n ð9Þ

4.3 Improved PSO Algorithm

Because we have got the fitness, what we also need to know is the speed of particles.
The speed determines the direction and distance they fly. Then the particles will follow
the current optimal particle to search the best solution. We iterate this step to update the
particle until we find the optimal solution or up to upper limit of the iteration. However,
the basic PSO algorithm is used to solve the continuous problem. But we can’t directly
use formula (7) in the TSP problem. Therefore, we improved the PSO algorithm and
introduced the exchange order to construct a special PSO algorithm. So we can use it to
solve the traveling salesman problem. We introduce the following new speed formula.

V
0
id ¼ Vid � aðpid � XidÞ � bðpgd � XidÞ ð10Þ

The a, b is the random number between 0 and 1.a Pid � Xidð Þ means the basic
exchange sequence Pid � Xidð Þ is retained at the probability a. b Pgd � Xid

� �
means the

basic exchange sequence Pgd � Xid
� �

is retained at the probability b. So we can get this
conclusion: when a is bigger, Pid � Xidð Þ is larger, the effect of Pid is bigger. Similarly,
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when b, Pgd � Xid
� �

is larger, the effect of Pgd is bigger.
Next, we will describe the algorithm. First, we input the location and residual

energy of each sensor nodes. We initial Pid and Pgd and randomly generated N particles.
Each particle means a path to traverse all nodes. Next, according to the particle fitness
function, we calculate the fitness of each particle. Then we start to iterate: we randomly
change the path sequence and generate a new path and we calculate the fitness again.
We compare it to the fitness of the best position of Pid the particle experiences. If better,
we update Pid. Then, we also compare it to the fitness of the best position of Pgd the
group experiences. If better, we update Pgd. If we can find the enough good position or
up to the maximum number of iterations. We say we meet the ending conditions to end
the cycle. Otherwise, continue to iterate. The flow chart of the algorithm is as Fig. 2:

5 Experiment and Simulation

In our simulation experiment, we laid N sensors at random in a square area whose side
length L is 200. We laid a base station to receive sensor signal. Each sensor is equipped
with CC2530 communication module and PIR to detect the target. The average current
is 10 mA under 3 V voltage when the sensor is activated. It consumes 27 mA when
they send or receive data package. The supply voltage range is between 2.0 V and
3.6 V, and we use 3 V in this experiment. Each sensor produces data package at

Fig. 2. The flowchart of method
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constant speed, and each data package measures 20 bytes. During spare time the
average current is 170 lA. We set the threshold value of the sensor is half of the whole
power capacity. Recharging vehicle runs constantly at 1 m/s which consumes 0.56/m.

We realize the algorithm through Java and illustrate the result of the algorithm by
diagram. We set these two auto-charging cars for two kinds of algorithms with same
initial coordinates. Also, we set the initial coordinate of sensors randomly. We compare
the results of CRSA and PSO: setting 5 sensor groups, and the sensor node numbers of
these groups are 20, 40, 60, 80, 100, respectively.

5.1 Utility Evaluation

First of all, we evaluate the charging utility of the two algorithms. We compare the
charging utility of the recharging vehicle under two algorithms. In the former condi-
tion, recharging vehicle charges the sensor through the charging path given by PSO.
Meanwhile, recharging vehicle charges the sensor by the path given by CRSA in the
second condition.

The comparison of charging utility within two algorithms that recharging vehicles
charge all the sensors’ nodes by the given paths is showed in Fig. 1 as below. The
abscissa of the chart is the number of the sensors while the ordinate of the chart is the
charging utility.

It illustrates by the Fig. 3 that when the scales of the sensors are 20, 40, 60, 80, 100,
charging utilities of PSO are all larger than the corresponding ones of CRSA. In addition,
with the scale of sensors enlarging the utility gap between these two algorithms becomes
wider and wider. When the sensor’s scale is small, the paths and given paths from PSO
intelligent algorithm are less, when the sensor scale is 20, PSO algorithm only improves
the charging utility by 37.2%.When the sensor scale is 40, the utility increases by 44.6%,
while the scale is 60, it increases by 52.3%. Additionally, when the scale is 80 or 100, the
utility is improved by 73.8% or 75.4% respectively. It demonstrates that the larger the
scale is the better charging utility planned by PSO algorithm.

Fig. 3. The compared result of two algorithms for 5 networks
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5.2 Convergence Analysis

Then, we will analyze the convergence of PSO. As followed, we compare these
convergences in 5 different scales.

The Fig. 4 shows the convergence of PSO algorithm when sensor scale is 20. We
can see from the graph that algorithm converges rapidly at 39th generation with a
constant rate: 394.8.

As for the sensor group whose scale is 40, its algorithm convergence is shown by
Fig. 5. The utility converges at 919th generation. Additionally, before the final con-
vergence the utility convergent briefly for three times. At last, it finds a new best
particle and converges. After the convergence, the utility maintains at 767.3.

As for the sensor group whose scale is 60, its algorithm convergence is shown by
Fig. 6. The utility converges at 1781th generation. After the final convergence, the
utility maintains at 1032.1. Additionally, before the final convergence the utility
convergent briefly for five times. At last, it finds a new best particle and converges.

As for the sensor group whose scale is 80, its algorithm convergence is shown by
Fig. 7. The utility converges at 2472th generation. After the final convergence, the
utility maintains at 1395.2. Additionally, before the final convergence the utility
convergent briefly for nine times. At last, it finds a new best particle and converges.

As for the sensor group whose scale is 100, its algorithm convergence is shown by
Fig. 8. The utility converges at 419th generation. After the final convergence, the utility
maintains at 1664.1. Additionally, before the final convergence the utility convergent
briefly for three times. At last, it finds a new best particle and converges.

Fig. 4. The fitness of PSO with 20 sensors Fig. 5. The fitness of PSO with 40 sensors
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5.3 Shortest Distance Assessment

We evaluate the shortest moving distance for sensors which is provided by recharging
vehicles of two algorithms. We compare the shortest distances when sensor scale is 20,
40, 60, 80, 100 of two algorithms, respectively. Under the first circumstance,
recharging vehicles plan the charging path and calculate the shortest distance by PSO
algorithm. While under the second circumstance, recharging vehicles plan the charging
path and calculate the shortest distance by CRSA algorithm.

It can be shown by Fig. 9 that with the sensor scale extending the distance for
recharging vehicles need to move increases. However, it is not linear increase. When
sensor scale increases from 60 to 80, the shortest moving distance for recharging

Fig. 6. The fitness of PSO with 60
sensors

Fig. 7. The fitness of PSO with 80 sensors

Fig. 8. The fitness of PSO with 100 sensors
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vehicle increases apparently slower. When sensor scale is 20, the shortest distance
planned by CRSA algorithm is 793 while it planned by PSO algorithm is 423. The
shortest moving distance optimizes and improves by 87.5%. When sensor scale is 40,
the shortest distance planned by CRSA algorithm is 1544 while it planned by PSO
algorithm is 598. The shortest moving distance optimizes and improves by 158.3%.
When sensor scale is 60, the shortest distance planned by CRSA algorithm is 2597
while it planned by PSO algorithm is 1145. The shortest moving distance optimizes
and improves by 126.8%. When sensor scale is 80, the shortest distance planned by
CRSA algorithm is 2971 while it planned by PSO algorithm is 1448. The shortest
moving distance optimizes and improves by 105.2%. When sensor scale is 100, the
shortest moving distance planned by CRSA algorithm is 4154 while it planned by PSO
algorithm is 2546. The shortest moving distance optimizes and improves by 63.1%.

6 Conclusion

In this paper, we proposed a novel route scheduling method based on particle swarm
optimization for wireless sensor network to maximize network utility. Experiments
results indicate that our method can more effective replenish energy than compared
method. Next, we will relax the assumption of energy to study the more real recharging
scheduling for wireless network.
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