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Abstract. Anchor selection refers to choosing a small portion of the
nodes with known locations to ensure the unique localizability and/or
improve the accuracy of cooperative localization. Focusing on the local-
ization accuracy, conventional practice suggests that the anchors should
be deployed on the perimeter of the network. This paper derives the
perimeter anchor deployment strategy by performing a bound analysis
for the Cramér-Rao lower bound (CRLB) which quantifies the localiza-
tion accuracy. It is proved that the uniform perimeter anchor deployment
strategy is the optimal to fix an isotropically discriminable relative con-
figuration whose nodes are randomly deployed onto a two-dimensional
plane. For the relative configuration specified by the internode distance
measurements, we introduce an error metric to evaluate the anchor selec-
tion performance, together with an upper bound that is independent of
anchor selection.

Keywords: Wireless sensor networks · Relative configuration ·
Kullback-Cleibler distance · Singular value decomposition · Internode
distances

1 Introduction

Cooperative localization has attracted great interest recently because it meets
the requirement of obtaining the node locations for the emerging wireless
sensor networks and other large scale networks to perform various monitor-
ing/surveillance tasks [1]. It uses the internode measurements, e.g., connectiv-
ity, received signal strength (RSS), angel-of-arrival (AOA), angel-difference-of-
arrival (ADOA), time-of-arrival (TOA), or time-difference-of-arrival (TDOA), to
expand the localization area and/or improve the localization accuracy [2,3]. But
the internode measurements provide only the relative location information [2,4].
To get the absolute locations, one should assign absolute locations to a small
portion of the nodes, called anchors, a priori. Anchor selection, or named anchor
deployment/placement, refers to determining which nodes should be specified as
the anchors to ensure the coverage and/or improve the accuracy of cooperative
localization.
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Ensuring the coverage of cooperative localization is usually known as the
unique localizability problem. Given the observed data, i.e., the internode mea-
surements and the anchor locations, the network is said to be uniquely localizable
if there is a unique set of node locations consistent with the given data. This
problem is closely related to the graph rigidity [5]. That is, a network is unique
localizable if and only if the corresponding graph (whose edges are composed of
the ones related to the internode measurements and the ones between at least
three, in two dimensional case, noncollinear anchors) is globally rigid. Testing
the unique localizability of a network requires only polynomial time, but the
realization problem is NP-hard [6]. To cope with this realization problem, a
triangulation-based graph is constructed, where the realization time is polyno-
mial with respect to the node number [6]. An extension of the triangulation-based
graph is involving the wheel structure [7], and some special graphs can even be
realized in linear time [8]. The minimum number of the anchors to guarantee the
unique localizability was investigated in [9], and which nodes can be uniquely
located under given anchor locations was explored in [10].

Besides the coverage, the localization accuracy is another object that can
be improved by anchor selection. Focusing on the localization accuracy, most
existing work suggested that the anchors should be placed on the perimeter of
the network. By using the multi-hop distance approximation, the outmost corner
anchor placement can be derived after transforming cooperative localization into
conventional localization [11]. Simulations in [12] demonstrated that anchors
deployed in the network center or covering a small area may cause large error.
Instead of the outmost corner anchor placement, the near perimeter, but not
the outmost, placement exhibited the best performance in the simulations. For
some specific algorithms in cooperative localization [2,13], the experiments also
support the perimeter anchor deployment strategy.

From another point of view, the internode measurements specify the net-
work relative configuration [4], which depicts the “shape” of the network with-
out considering the network’s location and orientation [3]. This leads to a rela-
tive/transformation subspace decomposition, where the anchor selection seems
mainly affect the error in the transformation subspace but not the error in the
relative subspace [4,14]. Based on this discovery, a perimeter anchor deployment
can be derived by minimizing the principal angle between anchor constraint sub-
space and the transformation subspace [15]. Besides, if we introduce the anchor
location uncertainty but ignore the internode measurement noise, the uniform
perimeter anchor deployment strategy can be proved to be the optimal when the
nodes are randomly deployed on a two-dimensional plane [16].

This paper derives a uniform perimeter anchor deployment strategy by mini-
mizing an approximation of the Cramér-Rao lower bound (CRLB) which quanti-
fies the localization error. This approximation is obtained from a bound analysis
for the CRLB, and is actually the CRLB under the assumption that the corre-
sponding relative configuration is isotropically discriminable. Considering that
the relative configuration specified by the noisy internode distance measurements
is not isotropically discriminable in general, we introduce an error metric to
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evaluation the approximation performance, together with an upper bound that
is independent of anchor selection.

The remainder of this paper is organized as follows. Section 2 derives the
CRLB for the node locations under a statistical model for cooperative local-
ization. For the derived CRLB, Sect. 3 introduces an approximation, based on
which a uniform perimeter anchor deployment strategy can be derived when the
nodes are randomly deployed on a two-dimensional plane. In Sect. 4, we conclude
this paper.

2 Background

This section details the statistical model of the internode distance measure-
ments and derives the CRLB for the unknown node locations under given anchor
locations.

Let us consider a network composed of n nodes, whose relative configuration
is specified by the internode distance measurements modeled as

yi,j = di,j + εi,j , (i, j) ∈ E (1)

where di,j = ‖si − sj‖ denotes the Euclidean distance between the ith and the
jth node, εi,j , (i, j) ∈ E , are independent and identical distributed Gaussian
stochastic noises with zero mean and variance σ2, and E denotes the index set of
connected edges corresponding to the distance measurements. In this section, we
assume the distance measurements are sufficient to guarantee the global rigidity
of the network, and the distance measurements are symmetrical so that any
index pair (i, j) ∈ E fulfills i < j.

The logarithm of the probability density function specified by (1) is

log p(y; s) = − 1
2σ2

∑

(i,j)∈E
(yi,j − di,j)2 + c (2)

where the measurement vector y = [yi,j ](i,j)∈E , and the constant c is independent
of s. After taking the negative expectation of the second derivation of (2), we
get the FIM of s

Js = −E
[
∂2 log p(y; s)

∂s∂sT

]
= σ−2FTF (3)

where the rows of F are the partial derivatives of di,j , (i, j) ∈ E , with respect to
the location vector s, given by

∂di,j

∂sT
=

[
01×2(i−1), τττ

T
i,j ,01×2(j−i−1), τττ

T
j,i,01×2(n−j)

]
(4)

where τττ i,j = −τττ j,i = si−sj
‖si−sj‖ .

Internode distances specify only the relative configuration of the network,
leaving the network location and orientation unknown. According to this fact,
there exists a relative-transformation decomposition of the location subspace
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R
2n [3,4]. The transformation subspace relates to the translation and rota-

tion of the network, which is spanned by the columns of V = [1x,1y,v]
where 1x = [1, 0, . . . , 1, 0]T ∈ R

2n, 1y = [0, 1, . . . , 0, 1]T ∈ R
2n, and v =

[s1,y,−s1,x, . . . , sn,y,−sn,x]T ∈ R
2n. The relative subspace relates to shape

(including size) of the network, which is spanned by the columns of U which
form an orthonormal basis of the null space of VT . Using a suitable U, we can
perform a compact singular value decomposition (SVD) of the FIM Js in the
relative subspace as

Js = UΛΛΛUT (5)

where ΛΛΛ is a diagonal matrix with diagonal elements λ1 ≥ λ2 ≥ · · · ≥ λ2n−3 > 0.
The unknown node locations can be uniquely estimated after setting at least

three nodes as anchors. Here, we use U and A denote the index set of the
unknown nodes and the anchor nodes, respectively, where U ⋃ A = {1, 2, · · · , n}.
After given m anchors, the CRLB of the unknown node locations can be repre-
sented as

C = (HTJsH)−1 (6)

where H is a 2n-by-2(n − m) matrix which is stacked in column by
[
02×2(j−1), I2,02×2(n−j)

]T
, j ∈ U

in column.
Throughout this paper, the optimal anchor set refers to the one minimizing

the CRLB trace tr(C), which lower bounds the variance of any unbiased estimate
and can be asymptotically achieved by maximum likelihood estimation (MLE).

3 Bound Analysis

It is somewhat difficult to derive the perimeter anchor deployment strategy
from the analytic expression of (6). To cope with this problem, we introduce
an approximation b(A) of tr(C), where the difference between tr(C) and b(A)
is bounded as below.

Proposition 1. The ratio between tr(C) and b(A) is bounded as

λ−1
1 ≤ tr (C)

b(A)
≤ λ−1

2n−3. (7)

where λ1 and λ2n−3 are the first and the (2n − 3)th largest eigenvalues of the
distance FIM Js, and

b(A) = tr
((

HTUUTH
)−1

)

n

m

(
(s̄A,x − s̄x)2 + (s̄A,y − s̄y)2 + ρ2

ρ2A
+ 2

)
+ 2(n − m) − 3 (8)

where s̄x = 1
n

∑n
i=1 si,x, s̄y = 1

n

∑n
i=1 si,y, s̄A,x = 1

m

∑
j∈A sj,x, s̄A,y =

1
m

∑
j∈A sj,y, ρ2 = 1

n

∑n
i=1(si,x − s̄x)2 + (si,y − s̄y)2, and ρ2A = 1

m

∑
j∈A(sj,x −

s̄A,x)2 + (sj,y − s̄A,y)2.
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The derivation of (7) and (8) can be found in Appendix A.
Minimizing b(A) leads to the uniform perimeter anchor deployment strategy.

In (8), b(A) can be viewed as a function of (s̄A,x− s̄x)2+(s̄A,y − s̄y)2 and ρA that
are affected by the anchor selection. To minimize b(A), (s̄A,x− s̄x)2+(s̄A,y − s̄y)2

should be minimized, and ρA should be maximized. (s̄A,x − s̄x)2 + (s̄A,y − s̄y)2

evaluates the squared distance between the centroids of the anchors and the
nodes. It can be reduced to zero if s̄A,x = s̄x and s̄A,y = s̄y. ρA quantifies the
diameter of the network composed of the anchors. To maximize it, the anchors
should be deployed on the perimeter of the network. When the nodes are ran-
domly deployed in a two-dimensional plane, deploying the anchors uniformly
around the perimeter of the network meets the requirements above, so that it
can be viewed as an optimal strategy to reduce b(A).

What is the difference between minimizing b(A) and minimizing tr(C)? Here
we provide four examples to demonstrate the difference between b(A) and tr(C),
seen in Fig. 1. These four examples differ in the node configuration, where the
nodes are deployed regularly in a circular region in Fig. 1a, randomly in a circu-
lar region in Fig. 1b, regularly in a square region in Fig. 1c, and randomly in a
square region in Fig. 1d. Figure 1e, f, g, and h display the CRLB trace tr(C), its
lower bound λ−1

1 b(A), and upper bound λ−1
2n−3b(A) as the functions of all anchor

triplets selected from the nodes, sorted by the descending order of b(A). From
these figures, it can be found that there is a similar tendency in the variation of
tr(C) and b(A), so that minimizing tr(C) can be approximated by minimizing
b(A). However, there are local fluctuations of tr(C). Because of the fluctuations,
the anchors selected by minimizing b(A) may not be the ones minimizing tr(C),
as seen in Fig. 1c and d. Therefore, the performance of the proposed approxima-
tion should be investigated.

3.1 Isotropic Discriminability

What is b(A)? By using relative-transformation decomposition, the location vec-
tor s can be reparameterized as

s = Uηηη + Vζζζ (9)

where ηηη ∈ R
2n−3 and ζζζ ∈ R

3 refer to the coordinates in the relative and trans-
formation subspace, respectively.

Under the assumption that the deformation of the relative configuration is
isotropically discriminable, i.e., the FIM Jηηη = αI2n−3, α > 0, and no informa-
tion on the global transformation is available, i.e., the FIM Jζζζ = 0, we have

Js = αUUT . (10)

Throughout this paper, we ignore the factor α without loss of generality.
After setting m anchors, we get the CRLB of s from (6), whose trace is

just b(A). Comparing (5) and (10), we find that the approximation b(A) is
equivalent to an isotropic discriminability approximation of the deformation of
the relative configuration, where the similarity can be evaluated by the eigenvalue
ratio λ1/λ2n−3.
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Fig. 1. Four examples: Fig (a), (b), (c), and (d) present the node configurations, where
the anchor triplet selected by minimizing b(A) (red empty diamonds: �) is compared
with the one obtained by minimizing tr(C) (red solid circles: •). Figure (e), (f), (g),
and (h) provide tr(C), its lower bound λ−1

1 b(A), and upper bound λ−1
2n−3b(A) as the

functions of all anchor triplets selected from the nodes, sorted by the descending order
of b(A). (Color figure online)

3.2 Performance Analysis

The performance of the approximation (8) can be quantified through the CRLB
ratio tr(C(Ab))

tr(C(Ac))
, where the numerator is the trace of the CRLB (6) corresponding

to the anchor set Ab obtained by minimizing b(A) and the denominator referring
to the anchor set Ac obtained by minimizing the CRLB trace directly. This
performance metric is bounded as below.

Proposition 2. The CRLB ratio is bounded as

1 ≤ tr(C(Ab))
tr(C(Ac))

≤ λ1

λ2n−3
. (11)

The proof is given in Appendix B.
The eigenvalue ratio λ1/λ2n−3 is independent of the anchor selection. When

λ1/λ2n−3 approaches 1, the anchor set selected by minimizing b(A) would be
close to the optimal one. But in practice, although the CRLB ratios of the
selected anchors are 1, 1, 1.0033, and 1.0287, the corresponding upper bounds
λ1/λ2n−3 are 4.3949, 5.4152, 4.9110, and 6.0145, respectively in Fig. 1a, b, c
and d. Compared with the CRLB ratio, it seems that the upper bound λ1/λ2n−3

tends to be conservative.
In fact, there is a negative result.

Proposition 3. For fully connected networks, the eigenvalue ratio λ1/λ2n−3 is
bounded as

λ1/λ2n−3 ≥ 2. (12)
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The proof can be found in Appendix C.
The equality in (12) holds under the condition that the nodes are uniformly

deployed on a circle. As seen in Fig. 2, 49 nodes are uniformly deployed on a circle,
with all pairwise distance measurements available. In this case, λ1/λ2n−3 = 2,
where λ1 = 49 and λ2n−3 = 24.5. From Fig. 2b, it can be seen that the upper
bound λ−1

2n−3b(A) is close to the CRLB trace tr(C), thus the anchor set selected
by minimizing b(A) is the optimal in this trivial case.
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Fig. 2. Special case: Fig (a) presents the configuration of 49 nodes uniformly deployed
on a ring, where the anchor triplet selected by minimizing b(A) (red empty diamonds:
�) equals to (up to a symmetry) the one obtained by minimizing tr(C) (red solid circles:
•). Figure (b) provides tr(C), its lower bound λ−1

1 b(A), and upper bound λ−1
2n−3b(A)

as the functions of all anchor triplets selected from the nodes, sorted by the descending
order of b(A). (Color figure online)

4 Conclusion

In this paper, a uniform perimeter anchor deployment strategy is proved to be
the optimal to fixing an isotropically discriminable relative configuration with
randomly deployed nodes onto a two-dimensional plane. This strategy is used
for anchor selection in cooperative location, where there exists deviation coming
from the fact that the relative configuration specified by the internode distances
is not isotropically discriminable in general. Theoretical analysis is performed
to investigate the deviation, and more work is still needed to investigate the
performance of the uniform perimeter anchor deployment strategy in future.
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A Derivation of (7) and (8)

From (5), we have
λ2n−3UUT ≤ Js ≤ λ1UUT (13)

and thus
λ2n−3HTUUTH ≤ HTJsH ≤ λ1HTUUTH. (14)

Note that C =
(
HTJsH

)−1, we get

λ−1
1 ≤ tr (C)

b(A)
≤ λ−1

2n−3 (15)

after performing inversion and trace operation of (14).
To derive an analytical representation of b(A), we use an column orthonor-

malized version of V

V =

[
1√
n
1x,

1√
n
1y,

vs − 1
n1

T
xvs1x − 1

n1
T
y vs1y

‖vs − 1
n1

T
xvs1x − 1

n1
T
y vs1y‖

]
(16)

and thus HTUUTH = I2(n−m) − HTVVTH.
By applying the block matrix inversion formula and some matrix manipula-

tions, we get

tr
((

I2(n−m) − HTVVTH
)−1

)
= tr

((
VT

(
I2n − HHT

)
V

)−1
)

+ 2(n − m) − 3.

(17)
Note that

VT
(
I2n − HHT

)
V =

m

n

⎡

⎢⎣
1 0 − s̄A,y−s̄y

ρ

0 1 s̄A,x−s̄x

ρ

− s̄A,y−s̄y

ρ
s̄A,x−s̄x

ρ
ρ̃2
A

ρ2

⎤

⎥⎦ (18)

where s̄x = 1
n

∑n
i=1 si,x, s̄y = 1

n

∑n
i=1 si,y, s̄A,x = 1

m

∑
j∈A sj,x, s̄A,y =

1
m

∑
j∈A sj,y, ρ2 = 1

n

∑n
i=1(si,x − s̄x)2 + (si,y − s̄y)2, and ρ̃2A = 1

m

∑
j∈A(sj,x −

s̄x)2 + (sj,y − s̄y)2, we get

(
VT
(
I2n − HHT

)
V
)−1

=
n

m

⎡
⎢⎢⎢⎣

1 +
(s̄A,y−s̄y)

2

ρ2
A

n(s̄A,x−s̄x)(s̄A,y−s̄y)

−ρ2
A

ρ(s̄A,y−s̄y)

ρ2
A

n(s̄A,x−s̄x)(s̄A,y−s̄y)

−ρ2
A

1 +
(s̄A,x−s̄x)

2

ρ2
A

ρ(s̄A,x−s̄x)

−ρ2
A

ρ(s̄A,y−s̄y)

ρ2
A

ρ(s̄A,x−s̄x)

−ρ2
A

ρ2

ρ2
A

⎤
⎥⎥⎥⎦

(19)

where

ρ2A =
1
m

∑

j∈A
(sj,x − s̄A,x)2 + (sj,y − s̄A,y)2. (20)

Substituting (19) into (17), we get (8).
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B Proof of (11)

Let Ac and Ab denote the anchor set obtained by minimizing tr(C) and b(A),
respectively. After replacing C with C(A) to stress its dependence on the anchor
selection, we get

tr(C(Ab))
tr(C(Ac))

≥ 1 (21)

b(Ab)
b(Ac)

≤ 1. (22)

From (7), we have

tr(C(Ac)) ≥ λ−1
1 b(Ac) (23)

tr(C(Ab)) ≤ λ−1
2n−3b(Ab) (24)

and thus
tr(C(Ab))
tr(C(Ac))

≤ λ−1
2n−3b(Ab)
λ−1
1 b(Ac)

≤ λ1

λ2n−3
(25)

where the right inequality is obtained by using (22).
From (21) and (25), we get

1 ≤ tr(C(Ab))
tr(C(Ac))

≤ λ1

λ2n−3
. (26)

C Proof of (12)

Without loss of generality, we set σ2 = 1. Then for a fully connected network,
it can be verified that n is an eigenvalue of Js with eigenvector proportional to
s − 1

n1x1T
x s − 1

n1y1T
y s. Note that the ith 2-by-2 diagonal block of Js can be

rewritten as
∑

j,j �=i τττ i,jτττ
T
i,j , and

tr(τττ i,jτττ
T
i,j) = tr(τττT

i,jτττ i,j) = 1, i �= j (27)

we have

tr(Js) =
n∑

i=1

tr(
∑

j,j �=i

τττ i,jτττ
T
i,j) = n(n − 1). (28)

Since Js is positive semidefinite with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λ2n−3 ≥
λ2n−2 = λ2n−1 = λ2n = 0, we get

λ2n−3 = min
i=2,3,...,2n−3

λi ≤ n(n − 1) − n

2n − 4
=

n

2
. (29)

Therefore, λ1/λ2n−3 ≥ 2 because λ1 ≥ n.
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