
Bandwidth Scheduling with Multiple Fixed
Node-Disjoint Paths in High-Performance

Networks

Aiqin Hou1, Chase Q. Wu1,2(B), Dingyi Fang1, Yongqiang Wang1,
and Meng Wang1

1 School of Information Science and Technology,
Northwest University, Xi’an 710127, Shaanxi, China

{houaiqin,dyf,yqwang}@nwu.edu.cn, xidawm@stumail.nwu.edu.cn
2 Department of Computer Science, New Jersey Institute of Technology,

Newark, NJ 07102, USA
chase.wu@njit.edu

Abstract. Many large-scale applications generate large volumes of data
that must be transferred over high-performance networks for various
storage or analysis purposes. Such requirements call for a fast band-
width scheduling solution to discover feasible and efficient reservation
options in a time-varying network environment. We investigate a band-
width scheduling problem with two node-disjoint paths, referred to as
BS-2NDP, to support big data transfer. In BS-2NDP, we further con-
sider two different types of paths: (i) two fixed paths of fixed bandwidth
(2FPFB), and (ii) two fixed paths of variable bandwidth (2FPVB). We
show that both 2FPFB and 2FPVB are NP-complete, and then design
heuristic approach-based solutions, which are implemented and tested in
both simulated and real-life networks. Extensive results illustrate that
the proposed heuristics achieve a close-to-optimal performance in small-
scale networks, and significantly outperform other heuristic approaches
in large-scale networks.

Keywords: High-performance networks · Bandwidth scheduling ·
Node-disjoint paths

1 Introduction

Many large-scale applications in various domains require fast and reliable trans-
fer of big data for remote operations, which has gone beyond the capability
of traditional shared IP networks. In recent years, high-performance networks
(HPNs) with the capability of bandwidth reservation have emerged as an effec-
tive solution and their significance has been well recognized in broad science and
network research communities.

As the central function unit of a generalized control plane for provisioning
dedicated channels in HPNs, the bandwidth scheduler computes appropriate
c© ICST Institute forComputer Sciences, Social Informatics andTelecommunicationsEngineering 2017

J.-H. Lee and S. Pack (Eds.): QShine 2016, LNICST 199, pp. 86–96, 2017.

DOI: 10.1007/978-3-319-60717-7 9



Bandwidth Scheduling in High-Performance Networks 87

network paths and allocates link bandwidths to meet specific user requests based
on network topology and bandwidth availability. To meet the unprecedented
requirement of big data movement, it is a natural extension from single-path
to multi-path transfer, which is generally more effective in terms of throughput,
robustness, load balance, and congestion reduction. However, multi-path routing
also brings additional complexity and overhead to the network’s control and data
planes [1].

The complexity of multi-path routing varies depending on the type and num-
ber of constraints, and many of these routing problems are NP-complete. Sev-
eral studies have shown that the Multiple Constrained Path (MCP) problems
are generally NP-complete and hence are not solvable in polynomial time [2,3].
Furthermore, finding disjoint paths with a single constraint is also an NP-hard
problem [4–6]. Multiple paths usually have an additional constraint to be link-
disjoint or node-disjoint. Node-disjoint paths are usually harder to find but pro-
vide more robustness in case of node failures. Traditional one-path routing with
path constraint/objective is NP-complete, while the problem of two-path routing
that considers reliability is strongly NP-hard [7].

In this paper, we investigate a problem of Bandwidth Scheduling with Two
Node-Disjoint Paths (BS-2NDP) to support big data transfer. In BS-2NDP,
we further consider two different types of paths: (i) two fixed paths of fixed
bandwidth (2FPFB), and (ii) two fixed paths of variable bandwidth (2FPVB).
We prove that both 2FPFB and 2FPVB are NP-complete, and design heuristic
approach-based solutions, which are implemented and tested in both simulated
and real-life networks. Extensive results illustrate that the proposed heuristics
achieve a close-to-optimal performance in small-scale networks, and significantly
outperform other heuristic approaches in large-scale networks.

2 Related Work

Several studies addressed the problem of finding maximum combined bandwidth
of disjoint paths. In [5], Shen et al. considered two problems where the notions of
multi-path, disjoint path, and widest path are combined. They proved that both
problems are NP-complete and provided each an exact solution using ILP and
a heuristic solutions. In [6], Dahshan proved the Maximum-Bandwidth Node-
Disjoint Paths (MBNDP) problem to be NP-complete, which is essentially an
MCP problem with two constraints: the first constraint is for the two paths
to be node-disjoint, and the second constraint is to maximize the sum of the
bandwidths of the two paths. This problem is also shown to be NP-complete
in [5]. A Max-Limit Bandwidth Disjoint Path (MLBDP) algorithm was proposed
in [6], which labels two concurrent paths as R (red path) and B (blue path). The
algorithm finds the R path with the maximum bandwidth, together with a node-
disjoint path B with bandwidth no less than a specified limit. In [8], the problem
is to obtain the λ-edge-disjoint-path-set (λDP/B) that has a maximum total
bandwidth for λ > 1, and a polynomial-time heuristic, Maximum Bandwidth
Algorithm (MBA), is designed to compute a path with the maximum bandwidth.



88 A. Hou et al.

In [9], a distributed distance-vector algorithm is used to find multiple node-
disjoint paths in a computer network. In [10], a two-disjoint multi-path routing
strategy using colored trees is proposed.

Different from most of the aforementioned work that considers static net-
works, we consider the problem of finding multiple node-disjoint paths with
maximum bandwidth in HPNs with time-varying link bandwidth availability.

3 Problem Formulation

3.1 Network Model

The HPN is typically modeled as a network graph G(V,E) with n nodes and m
links. Each link l ∈ E in the network is associated with a time-varying residual
bandwidth bl[i], which is denoted by a 3-tuple of time-bandwidth (TB) (tl[i], tl[i+
1], bl[i]) for the time interval (tl[i], tl[i+1]), i = 0, 1, 2, . . . , Tl−1, where Tl denotes
the number of time-slots on link l.

We build an Aggregated TB (ATB) list by combining and storing the TB
lists of all individual links in their intersected time-slots. We create a set of new
time slots by combining the time slots of all links, and then map the residual
bandwidths of each link to the ATB list in each new time slot. We denote the
ATB list as (t[0], t[1], b0[0], b1[0], . . . , bm−1[0]), . . . , (t[T −1], t[T ], b0[T −1], b1[T −
1], . . . , bm−1[T −1]), where T is the number of intersected time slots after aggre-
gating all TB lists. Note that time slot i corresponds to time interval (t[i], t[i+1]).

3.2 Problem Formulation

Definition 1. BS-2NDP: Given an HPN graph G(V,E) with an ATB list and
a user request specifying source node vs, destination node vd, and data size δ,
we wish to find two node-disjoint paths to move data of size δ from node vs to
node vd such that the data transfer end time tend is minimized.

Without loss of generality, we suppose that the data transfer may start at
time point t[0] = 0. In view of the simplicity and popularity of fixed-path routing
in practice, we consider two commonly used service models based on a fixed path
in BS-2NDP, i.e. 2FPFB and 2FPVB. On the other hand, the service models
based on a variable path would require some additional support from the control
plane and the network infrastructure for path switching, and hence are not used
as commonly in real-life HPNs.

Definition 2. 2FPFB (Two Fixed Paths with Fixed Bandwidth): Given the
network model and user request in BS-2NDP, the goal is to find two fixed node-
disjoint paths from vs to vd, each of which has a fixed bandwidth (i.e. the band-
width is invariable during the entire period of data transfer for the given request),
such that the data transfer end time is minimized.



Bandwidth Scheduling in High-Performance Networks 89

Definition 3. 2FPVB (Two Fixed Paths with Variable Bandwidth): Given the
network model and user request in BS-2NDP, the goal is to find two fixed node-
disjoint paths from vs to vd, each of which may use varying bandwidths across
different time slots during the data transfer, such that the data transfer end time
is minimized.

3.3 Complexity Analysis

Compared with the work in [4–7], which considers static networks (with constant
link bandwidths), the BS-2NDP problem is more general as the bandwidth avail-
ability of each link in HPNs is time-varying. In fact, both 2FPFB and 2FPVB
are NP-complete. We prove the NP-completeness of 2FPFB by showing that the
WPDPC [5] problem is a special case of 2FPFB, and prove the NP-completeness
of 2FPVB by generalizing from the single-path FPVB problem.

Theorem 1: 2FPFB is NP-complete
Proof: We restrict 2FPFB to WPDPC by only considering those instances in
which, the available bandwidth of each link does not change, i.e. the bandwidth
of each link is constant across all time-slots. In other words, WPDPC is a special
case of 2FPFB when the network is static with constant link bandwidths. Since
WPDPC is NP-complete [5], so is 2FPFB.

Theorem 2: 2FPFB is NP-complete
Proof: The NP-completeness of FPVB has been established in [11] by reducing
from the 0–1 Total Bandwidth (0–1 TB) problem. Obviously, 2FPVB is a more
general version of FPVB that computes multiple concurrent FPVB paths.

4 Algorithm Design

The NP-completeness of both 2FPFB and 2FPVB indicates that there does
not exist any polynomial-time optimal algorithm, unless P = NP . In this
section, firstly, we design naive greedy algorithms to solve 2FPFB/2FPVB. Sec-
ondly, we design optimal algorithms based on exhaustive search for small-scale
2FPFB/2FPVB problem instances. Lastly, we propose efficient heuristic algo-
rithms for large-scale problem instances.

4.1 Greedy Algorithms for 2FPFB and 2FPVB

Greedy2FPFB Algorithm. For 2FPFB, based on the single-path OptFPFB
algorithm in [12], we design a polynomial-time greedy algorithm, referred to
as Greedy2FPFB, whose pseudocode is provided in Algorithm1. In Line 1, it
first employs OptFPFB to compute the first path p1 with the maximum fixed
bandwidth BW1, assuming the use of one single path to transfer data of size δ.
In Line 2, it removes all nodes on path p1 from the original graph, resulting in a
new graph G′(V,E) comprised of only the residual nodes and links. In Line 3, it
employs OptFPFB to compute the second path p2 in G′(V,E) with the maximum



90 A. Hou et al.

fixed bandwidth BW2, again assuming the use of one single path to transfer data
of size δ. In Line 4, it computes the maximum combined bandwidth β of the two
paths p1 and p2. In Lines 5–7, it computes the end time for the transfer of data
size δ using these two node-disjoint paths concurrently. In order to ensure that
the two data transfers concurrently taking place on these two paths finish at the
same time, it allocates the data size δ to p1 and p2 in proportion to their fixed
bandwidths. In Line 8, it computes the data size δ1 to be transferred by p1, and
the rest (δ − δ1) is assigned to p2. The time complexity of Greedy2FPFB is the
same as that of OptFPFB, which is O(T 2 ·m · log n+T 3 ·m) [12], where n is the
number of nodes, m is the number of links, and T is the total number of new
time slots in the ATB list.

Algorithm 1. Greedy2FPFB
Input: an HPN graph G(V, E) with an ATB list of T time slots, source vs, destination

vd, and data size δ
Output: the earliest transfer end time tend, data partition δ1
1: p1(BW1) = OptFPFB(G, T, vs, vd, δ);
2: Remove the nodes and links of p1 from G to create a new G′;
3: p2(BW2) = OptFPFB(G′, T, vs, vd, δ);
4: β = BW1 + BW2;
5: if (β · (t[T − 1] − t[0]) ≥ δ and β �= 0) then
6: τ = δ/β;
7: tend = t[0] + τ ;
8: δ1 = BW1 × τ ;
9: return tend, δ1;

Greedy2FPVB Algorithm. For 2FPVB, based on the single-path MinFPVB
algorithm in [12], we design a greedy algorithm, referred to as Greedy2FPVB,
whose pseudocode is provided in Algorithm2. In Lines 1-3, it initializes the band-
width in each time-slot for each of two paths BW1[i], BW2[i], i = 0, 1, . . . , T − 1,
the remaining data size rd and the transfer time time. In Line 4, it employs
MinFPVB to compute the first path p1 with the maximum bandwidth BW1[i]
in each time slot, assuming the use of one single path. In Line 5, it removes the
nodes and links of path p1 from the original graph G, resulting in a new graph G′

comprised of only the residual nodes and links. In Line 6, it employs MinFPVB
to compute the second path p2 with the maximum bandwidth BW2[i] in each
time slot, again assuming the use of one single path. In Lines 7-20, it computes
the maximum combined bandwidth of the two paths p1 and p2 in the order of
sequential time slots, and then computes the transfer end time. In each time slot,
it allocates the data size to p1 and p2 in proportion to their bandwidths to ensure
that these two concurrent data transfers finish at the same time. Similarly, the
time complexity of Greedy2FPVB is also the same as that of MinFPVB [12],
which is O(m(T + logn)).



Bandwidth Scheduling in High-Performance Networks 91

Algorithm 2. Greedy2FPVB
Input: an HPN graph G(V, E) with an ATB list of T time slots, source vs, destination

vd, and data size δ
Output: the earliest transfer end time tend, data partition δ1
1: for (i = 0; i ≤ T − 1; i + +) do
2: BW1[i] = 0, BW2[i] = 0;
3: rd = δ; time = 0;
4: p1(BW1[]) = MinFPV B(G, T, vs, vd, δ);
5: Remove the nodes and links of path p1 from G to create G′;
6: p2(BW2[]) = MinFPV B(G′, T, vs, vd, δ);
7: i = 0; δ1 = 0;
8: while (rd ≥ 0) do
9: BWSum[i] = BW1[i] + BW2[i];

10: δ1 = δ1 + BW1[i] · (t[i + 1] − t[i]);
11: if (rd ≥ BWSum[i]) then
12: time = time + 1;
13: rd = rd − BWSum[i] · (t[i + 1] − t[i]);
14: else
15: time = time + rd/BWSum[i];
16: rd = 0;
17: tend = t[0] + time;
18: i = i + 1;
19: return tend, δ1.

4.2 Optimal Algorithms for 2FPFB and 2FPVB

We design two exhaustive search-based optimal algorithms for 2FPFB and
2FPVB, referred to as Opt2FPFB and Opt2FPVB, to compute the path-pair
that minimizes the data transfer end time in a brute-force manner: (i) find all
possible paths between the source and the destination in all possible time ranges
across contiguous time slots, (ii) enumerate all possible node-disjoint path-pairs
in each time range, and choose the path-pair that minimizes the data transfer
end time. Obviously, Opt2FPFB and Opt2FPVB are of exponential time com-
plexity and are only meant for being used as a comparison base in small-scale
problem instances. We will design more efficient heuristics below for large-scale
problems.

4.3 Improved Algorithms for 2FPFB and 2FPVB

In Greedy2FPFB and Greedy2FPVB, although the transfer time of each path
for data size δ is minimized at each respective step, there is no guarantee that
the concurrent transfer time τ by the path-pair for data size δ is minimized from
a global perspective, especially when the bandwidths of p1 or p2 before time slots
τ are smaller than the later time slots. We propose two improved algorithms,
i.e. Imp2FPFB and Imp2FPVB, to overcome their defects.



92 A. Hou et al.

Imp2FPFB Algorithm. The pseudocode of Imp2FPFB is provided in Algo-
rithm3. It first calls the previous Greedy2FPFB algorithm to compute the con-
current transfer time τ by the path-pair (p1, p2) for data size δ, and the data
partition δ1 to be assigned to path p1. It then uses OptFPFB twice to find a pair
of paths (p′

1, p
′
2) with larger bandwidths than the path-pair (p1, p2) during [0, τ ]

time slots, and computes the transfer time by (p′
1, p

′
2) for δ. The data partition-

ing method is the same as in Greedy2FPFB, i.e. the data size to be transferred
by each path is proportional to its bandwidth. Since the time complexity of
OptFPFB is O(T 2 · m · log n + T 3 · m) [12], the time complexity of Imp2FPFB
is also O(T 2 · m · log n + T 3 · m), which is the same as that of Greedy2FPFB.

Algorithm 3. Imp2FPFB
Input: an HPN graph G(V, E) with an ATB list of T time slots, source vs, destination

vd, and data size δ
Output: the earliest transfer end time tend

1: (τ, δ1) = Greedy2FPFB(G, T, vs, vd, δ);
2: δ2 = δ − δ1;
3: p′

1(BW ′
1) = OptFPFB(G, τ, vs, vd, δ1);

4: Remove the nodes and links of path p′
1 to create G′;

5: p′
2(BW ′

2) = OptFPFB(G′, τ, vs, vd, δ2);
6: β′ = BW ′

1 + BW ′
2;

7: if (β′ · (t[τ − 1] − t[0]) ≥ δ and β �= 0) then
8: tend = t[0] + δ/β′;
9: return tend.

Imp2FPVB Algorithm. The pseudocode of Imp2FPVB is provided in Algo-
rithm4. In Line 1, it calls the previous Greedy2FPVB algorithm to compute
the concurrent transfer time τ by a path-pair (p1, p2) for data size δ and the
variable bandwidths of each path BW1[i], BW2[i], i = 0, 1, . . . τ − 1, and the
data size δ1 to be transferred by p1. In Line 2, it computes the data size δ2
to be transferred by p2. In the remaining lines of code, it uses MinFPVB to
find a path-pair (p′

1, p
′
2) whose combined bandwidth is larger than that of the

path-pair (p1, p2) during [0, τ) time slots, computes the time-varying bandwidths
BW ′

1[i], BW ′
2[i], i = 0, 1, . . . τ − 1, of each path, and computes the transfer end

time for δ by (p′
1, p

′
2). The data partitioning is the same as in Greedy2FPVB.

In each time slot, it allocates the data size to these two paths in proportion to
their bandwidths to ensure that these two concurrent transfers finish at the same
time. The time complexity of Imp2FPVB is the same as that of MinFPVB [12],
i.e. O(m(T + logn)).



Bandwidth Scheduling in High-Performance Networks 93

Algorithm 4. Imp2FPVB
Input: an HPN graph G(V, E) with an ATB list of T time slots, source vs, destination

vd, and data size δ
Output: the earliest transfer end time tend

1: p1, p2(τ, δ1) = Greedy2FPV B(G, T, vs, vd, δ);
2: δ2 = δ − δ1;
3: p′

1(BW ′
1[]) = MinFPV B(G, τ, vs, vd, δ1);

4: Remove the nodes and links of path p1 to create G′;
5: p′

2(BW ′
2[]) = MinFPV B(G′, τ, vs, vd, δ2);

6: rd = δ; time = 0;
7: while (rd ≥ 0) do
8: BWSum[i] = BW ′

1[i] + BW ′
2[i];

9: if (rd ≥ BWSum[i]) then
10: time = time + 1;
11: rd = rd − BWSum[i] · (t[i + 1] − t[i]);
12: else
13: time = time + rd/BWSum[i];
14: rd = 0;
15: tend = t[0] + time;
16: return tend.

5 Performance Evaluation

We evaluate the performance of the proposed algorithms in small- and large-scale
simulated networks as well as a network based on the topology of the real-life
ESnet of the U.S. Department of Energy.

5.1 Simulation Setup

For performance evaluation, we create a set of networks of randomly generated
topology with a different number of nodes and links of random bandwidths,
which follow a normal distribution: b = bmax ·e− 1

2 (x)
2
Mb/s, where bmax is set to

be 100 Gbps, x is a random variable within the range of [0, 1]. The aggregated
time-bandwidth (ATB) list contains 100 time slots starting from the time t[0] =
0. For each user request, we randomly select a source node vs and a destination
node vd, and set the data size for transfer to be 500 GBytes.

5.2 Algorithm Comparison for 2FPFB/2FPVB in Small Networks

We first generate 10 random small-scale networks, indexed from 1 to 10, as shown
in Table 1.

For 2FPFB, in each of these 10 small-scale networks, we run Imp2FPFB,
Greedy2FPFB, and Opt2FPFB for 10 times with different random seeds, and
plot the mean and standard deviation of the data transfer end time in Fig. 1 for
comparison. We observe that Opt2FPFB always achieves the best performance
as expected and Imp2FPFB consistently outperforms Greedy2FPFB. It is worth



94 A. Hou et al.

Table 1. Index of 10 small-scale networks.

Index of network size 1 2 3 4 5 6 7 8 9 10

Number of nodes 7 10 12 15 17 20 23 26 28 30

Number of links 10 15 18 20 23 26 29 32 35 37

pointing out that Imp2FPFB achieves a close-to-optimal performance in these
small-scale problem instances.

We also evaluate the performance of Imp2FPVB, Greedy2FPVB and
Opt2FPVB for 2FPVB in the same 10 small-scale networks, and plot their
performance measurements in Fig. 2. Similarly, we observe that Opt2FPVB
always achieves the best performance as expected, and Imp2FPVB outperforms
Greedy2FPVB in all the cases we studied. It is also worth pointing out that
Imp2FPVB achieves a close-to-optimal performance in these small-scale prob-
lem instances.

Size of Network
1 2 3 4 5 6 7 8 9 10

Tr
an

sf
er

 E
nd

 T
im

e 
(m

in
ut

es
)

10

15

20

25

30

35

40

45

50

55
Imp2FPFB
Greedy2FPFB
Opt2FPFB

Fig. 1. Performance comparison of the
algorithms for 2FPFB in small net-
works.

Size of Network
1 2 3 4 5 6 7 8 9 10

Tr
an

sf
er

 E
nd

 T
im

e 
(m

in
ut

es
)

4

6

8

10

12

14

16

18

20

22
Imp2FPVB
Greedy2FPVB
Opt2FPVB

Fig. 2. Performance comparison of the
algorithms for 2FPVB in small net-
works.

5.3 Algorithm Comparison for 2FPFB/2FPVB in Large Networks

We generate 10 different large-scale networks with a random topology, indexed
from 1 to 10, as shown in Table 2. We run Greedy2FPFB/GreedyFPVB and
Imp2FPFB/Imp2FPVB in each of these network instances for 10 times with
different random seeds. Note that Opt2FPFB/Opt2FPVB is of exponential time
complexity and hence is not tested in these large-scale networks.

The performance measurements for 2FPFB and 2FPVB are plotted in Figs. 3
and 4, respectively. For 2FPFB, we observe that Imp2FPFB consistently out-
performs Greedy2FPFB, and for 2FPVB, Imp2FPVB consistently outperforms
Greedy2FPVB.



Bandwidth Scheduling in High-Performance Networks 95

Table 2. Index of 10 large-scale networks.

Index of network size 1 2 3 4 5 6 7 8 9 10

Number of nodes 40 50 60 70 80 90 100 120 150 200

Number of links 80 100 120 140 160 180 200 240 300 400

Size of Network
1 2 3 4 5 6 7 8 9 10

Tr
an

sf
er

 E
nd

 T
im

e 
(m

in
ut

es
)

10

20

30

40

50

60

70

80
Imp2FPFB
Greedy2FPFB

Fig. 3. Performance comparison of the
algorithms for 2FPFB in large net-
works.

Size of Network
1 2 3 4 5 6 7 8 9 10

Tr
an

sf
er

 E
nd

 T
im

e 
(m

in
ut

es
)

5

10

15

20

25

30

35

40

45

50
Imp2FPVB
Greedy2FPVB

Fig. 4. Performance comparison of the
algorithms for 2FPVB in large net-
works.

5.4 Algorithm Comparison for 2FPFB/2FPVB in ESnet5

To evaluate the performance in a practical setting, we run the proposed algo-
rithms on the topology of a real-life HPN, ESnet5 [13], with 57 nodes and
65 links, each of which has a bandwidth between 30 Gbps–100 Gbps. The user
requests have a variable data transfer size. We plot the performance measure-
ments of 2FPFB and 2FPVB in Figs. 5 and 6, respectively, which show that
Imp2FPFB and Imp2FPVB achieve better performance than Greedy2FPFB and
Greedy2FPVB, respectively.

Size of Data (GByte)
1000 1500 2000 2500 3000

Tr
an

sf
er

 E
nd

 T
im

e 
(m

in
ut

es
)

0

5

10

15

20

25

30

35

40
Imp2FPFB
Greedy2FPFB

Fig. 5. Performance comparison of the
algorithms for 2FPFB in ESnet5.

Size of Data (GByte)
1000 1500 2000 2500 3000

Tr
an

sf
er

 E
nd

 T
im

e 
(m

in
ut

es
)

4

6

8

10

12

14

16

18
Imp2FPVB
Greedy2FPVB

Fig. 6. Performance comparison of the
algorithms for 2FPVB in ESnet5.



96 A. Hou et al.

6 Conclusion

We investigated a problem of bandwidth scheduling with two different types of
node-disjoint paths in dedicated networks. We showed that these two problems
are NP-complete, and designed heuristic approaches. Extensive results based on
both simulated and real-life networks illustrated that the proposed heuristics
achieve a superior performance over other algorithms in comparison. It is of our
future interest to incorporate and test these scheduling algorithms in the control
plane of existing HPNs.

Acknowledgment. This research is sponsored by U.S. NSF under Grant No. CNS-
1560698 with New Jersey Institute of Technology, and National Nature Science Foun-
dation of China under Grant No. 61472320 and Beilin Science and Technology Plan
under Grant No. GX1403 with Northwest University, P.R. China.

References

1. Domzal, J., Dulinski, Z., Kantor, M.: A survey on methods to provide multipath
transmission in wired packet networks. COMNET 77, 18–41 (2015)

2. Mieghem, P.V., Kuipers, F.A.: On the complexity of QoS routing. Comput. Com-
mun. 26, 376–387 (2003)

3. Kuipers, F.A., VanMieghem, P.F.: Conditions that impact the complexity of QoS
routing. IEEE/ACM Trans. Netw. 13, 717–730 (2005)

4. Liang, W.: Robust routing in wide-area WDM networks. In: Proceedings of IPDPS,
San Francisco, CA (2001)

5. Shen, B.H., Hao, B., Sen, A.: On multipath routing using widest pair of disjoint
paths. In: Workshop on High Performance Switching and Routing, pp. 134–140
(2004)

6. Dahshan, M.H.: Maximum-bandwidth node-disjoint paths. Int. J. Adv. Comput.
Sci. Appl. 3, 48–56 (2012)

7. Andreas, A.K. Smith, J.C.: Exact algorithms for robust k-path routing problems.
In: Proceedings of GO, pp. 1–6 (2005)

8. Loh, R.C., Soh, S., Lazarescu, M.: Maximizing bandwidth using disjoint paths.
In: 24th IEEE International Conference on Advanced Information Networking and
Applications, pp. 304–311 (2010)

9. Sidhu, D., Nair, R., Abdallah, S.: Finding disjoint paths in networks. In: Proceed-
ings of ACM SIGCOMM, pp. 43–51 (1991)

10. Ramasubramanian, S., Krishnamoorthy, H., Krunz, M.: Disjoint multipath routing
using colored trees. COMNET 51(8), 2163–2180 (2007)

11. Guerin, R., Orda, A.: Networks with advance reservations: the routing perspective.
In: Proceedings of the 19th IEEE INFOCOM (2000)

12. Lin, Y., Wu, Q.: Complexity analysis and algorithm design for advance bandwidth
scheduling in dedicated networks. IEEE/ACM Trans. Netw. 21(1), 14–27 (2013)

13. ESnet. https://www.es.net

https://www.es.net

	Bandwidth Scheduling with Multiple Fixed Node-Disjoint Paths in High-Performance Networks
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Network Model
	3.2 Problem Formulation
	3.3 Complexity Analysis

	4 Algorithm Design
	4.1 Greedy Algorithms for 2FPFB and 2FPVB 
	4.2 Optimal Algorithms for 2FPFB and 2FPVB
	4.3 Improved Algorithms for 2FPFB and 2FPVB

	5 Performance Evaluation
	5.1 Simulation Setup
	5.2 Algorithm Comparison for 2FPFB/2FPVB in Small Networks
	5.3 Algorithm Comparison for 2FPFB/2FPVB in Large Networks
	5.4 Algorithm Comparison for 2FPFB/2FPVB in ESnet5

	6 Conclusion
	References


