
Firmware Verification of Embedded Devices
Based on a Blockchain

Boohyung Lee(B), Sehrish Malik, Sarang Wi, and Jong-Hyouk Lee

Protocol Engineering Laboratory, Sangmyung University,
Cheonan, Republic of Korea

{boohyung,serry,sarang,jonghyouk}@pel.smuc.ac.kr
http://pel.smuc.ac.kr

Abstract. In this paper, a new firmware verification scheme is pre-
sented that utilizes blockchain technologies for securing network embed-
ded devices. In the proposed scheme, an embedded device requests a
firmware verification to nodes connected in a blockchain network and gets
a response whether its firmware is up-to-date or not. If not latest, the
embedded device can securely download and install the latest firmware
from a firmware update server. Even in the case that the version of the
firmware is up-to-date, its integrity is checked via the blockchain nodes.
The proposed scheme guarantees that the embedded device’s firmware
is not tampered and latest. The effects of attacks targeting known vul-
nerabilities are thus minimized.

Keywords: Blockchain · Firmware verification · Embedded device

1 Introduction

According to the Gartner’s report [1], the Internet of Things (IoT) era will
change our live with network connected devices. The number of IoT devices is
expected to be 5 billion by 2020 and the number will continuously increase.
The IoT devices are tiny and small, while those are mostly embedded devices
designed for specific operations, e.g., sensing, automation, etc.

Recent cyber attacks are targeting firmware, which is a software program on
an embedded device [2], rather than services built on well turned servers [3].
Due to limited resources and capacities of embedded devices, strong security
properties have not been applied yet to the embedded devices. Many bugs and
vulnerabilities of embedded devices are reported every day and those are being
used by attackers to break into the embedded devices.

One of feasible ways to protect the embedded devices is to reduce the attack
window time by installing a latest firmware. It will help to minimize the effects
of attacks targeting known vulnerabilities. As physical access to the embedded
devices is possible, a verification of the firmware integrity is also required. In
addition, due to the increasing number of the embedded devices, excessive net-
work traffic may occur when downloading the latest firmware simultaneously
c© ICST Institute forComputer Sciences, Social Informatics andTelecommunicationsEngineering 2017

J.-H. Lee and S. Pack (Eds.): QShine 2016, LNICST 199, pp. 52–61, 2017.

DOI: 10.1007/978-3-319-60717-7 6



Firmware VerifiCation of Embedded Devices Based on a Blockchain 53

from a firmware update server. In other words, the current client and server
model is not suitable for firmware distribution in an IoT environment.

With this in mind, in this paper, we propose a new firmware verification
scheme that utilizes blockchain technologies. In the proposed scheme, an embed-
ded device requests a firmware verification to blockchain nodes on a peer-to-peer
decentralised network. It then receives a response whether its firmware is up-to-
date or not. When the firmware is not latest, the embedded device can securely
download and install the latest one from a firmware update server. Even in the
case that the version of the firmware is up-to-date, the firmware integrity is
checked via the blockchain nodes. Accordingly, the proposed scheme guarantees
that the embedded device’s firmware is not tampered and latest.

This paper is organized as follows. Section 2 reviews the ideas of blockchain.
Section 3 presents the proposed scheme with the overall architecture and opera-
tion procedures. Section 4 concludes this paper.

2 Blockchain

The blockchain was first proposed in 2009 by an anonymous person, Nakamoto
[4]. It was first used as a public ledger to provide trust transactions without an
involvement of the third party for Bitcoin, which is a digital currency.

2.1 Block

In the blockchain, a block is used to preserve data or information. Every block
contains a hash value of the previous block header that forms a type of chain
[5]. It is then used to authenticate the data and guarantee the block’s integrity.

The structure of block, for instance in Bitcoin, is made up of the block header
and block body. The block header is composed of the block size, version, previous
block header’s hash, merkle root, etc. The block’s body is consisted of the merkle
tree and transaction. A merkle tree [6] is also called a hash tree. Leaf nodes
of the tree make the hash value of blocks. It is useful because it allows an
efficient verification of the block with the merkle root. Finally, a transaction is
information of Bitcoin value that is broadcasted to the network and collected
into blocks. In this scheme, the block is used with some changes in the block
body.

2.2 Cryptographic Idea

A blockchain relies on two cryptographic methods: digital signature and crypto-
graphic hash function. A digital signature is a way for demonstrating the authen-
ticity of a digital message. It can be used to provide integrity and authentication
of data as well as non-repudiation. A sender signs a message using the sender’s
private key. After a receiver receives this message, it verifies the message using
the sender’s public key. This message can be verified by anyone holding the valid
public key of the sender [7].



54 B. Lee et al.

A cryptographic hash function is a mathematical operation that computes
a hash value. The function is deterministic, i.e., the same input will always
produce the same output, with the following properties: pre-image resistance,
second pre-image resistance, and collision resistance. In a blockchain, a SHA-
256 hash function is used [8].

3 Proposed Firmware Validation Scheme

The proposed scheme provides secure operations to verify an embedded device’s
firmware. If the device’s firmware is not up-to-date, the firmware update is pro-
ceeded with a firmware update server. Otherwise, the firmware’s integrity is
checked by blockchain nodes. Notations used are shown in Table 1.

3.1 Overview

Figure 1 depicts the overall architecture of the proposed scheme with the follow-
ing entities:

– Blockchain node: A node in a blockchain network. A set of blockchain nodes
is denoted as B = {b1, b2, ..., bn} and bi ∈ B.

– Normal node: A normal node is a device which needs to verify its firmware in a
blockchain network. A set of normal nodes is denoted as N = {n1, n2, ..., nn},
ni ∈ N , and N ⊂ B. It can be a request node or a response node. If a
node requests its firmware verification, the node becomes a request node.
After the verification process, it can validate its firmware. When a request
node sends the request message to verify its firmware, other normal nodes
can response. At this moment, the node responding to the request message
becomes a response node that verifies the request node’s firmware.

Fig. 1. Overall architecture



Firmware VerifiCation of Embedded Devices Based on a Blockchain 55

Table 1. Notation

Terminology Definition

N A set of normal nodes

V A set of verification nodes

S A set of firmware update servers

B A set of blockchain nodes

D A model name of ni

r Random number

ts Timestamp

v Current firmware version of ni

vnew Latest firmware version of ni

v′ Current firmware version of nj

fv Current firmware file of v

fv′ Current firmware file of v′

fvnew Latest firmware file of vnew

H(fv) Verifier generated with fv

H(fv′) Verifier generated with fv′

H(fvnew) Verifier generated with fvnew

IDni Identifier of ni

IDvi Identifier of vi

IDsi Identifier of si

E Elliptic Curve

P Base point of Elliptic Curve E

PUni Public key of ni

PRni Private key of ni

PUvi Public key of vi

PRvi Private key of vi

PUsi Public key of si

PRsi Private key of si

SKni−si Session key between ni and si

Signi Signature of ni

Sigvi Signature of vi

Sigsi Signature of si

– Verification node: A verification node is located to validate the firmware
of normal nodes by a vendor. A set of verification nodes is denoted as
V = {v1, v2, ..., vn}, vi ∈ V , and V ⊂ B. It has a verifier of latest firmware
versions corresponding to the model name D. A size of the verifier is 256
bits when SHA-256 is used. The verifier can be updated periodically by the



56 B. Lee et al.

firmware update server via the secure channel between the verification node
and firmware update server.

– Firmware update server: A firmware update server may be administered by
a vendor producing embedded devices. A set of firmware update servers is
denoted as S = {s1, s2, ..., sn}, si ∈ S. The normal node obtains the latest
firmware from the firmware update server. The files (e.g., firmware) trans-
ferred between the two are encrypted via the session key.

Figure 2, wherein the request node is ni and response node is nj , shows
the overall procedure of the proposed scheme. When a normal node wants to
verify its firmware, it broadcasts a verification request message in the blockchain
network. After receiving the message, any node (verification node or normal
node) responds to the verification request. Following are the two cases depending
on the type of the nodes involved.

– C1: Firmware verification between a normal node and a verification node
– C2: Firmware verification among normal nodes

Fig. 2. Overall procedure



Firmware VerifiCation of Embedded Devices Based on a Blockchain 57

In C1, a verification node confirms whether a request node uses the latest
version of the firmware or not. If the request node uses the latest version of
the firmware, it checks whether the request node’s firmware is modified through
exchanging and comparing each other’s verifiers. Otherwise, the request node’s
firmware is updated by the firmware update server.

In C2, a response node asks other nodes to join the verification process. After
receiving the messages from more than six other nodes, the request node and
response node start comparing their firmware versions. If they use the same
version of firmware, then they check whether the firmware has been altered by
comparing each other’s verifiers. If the version is not the same, the normal node
requests an update from the firmware update server.

3.2 Assumptions

The followings are assumed for the proposed scheme.

– The network is composed of blockchain nodes connected to each other. More
than eight normal nodes having the same firmware information with a request
node should exist for the firmware verification without an involvement of a
verification node. A vendor has to install more than one verification node.

– A normal node’s ID is a random unique value as the ID is generated when
the normal node requests the verification process based on its public key as
like the address of the Bitcoin’s blockchain. It provides privacy for the normal
node.

3.3 Block Structure

The proposed scheme uses a different block structure compared with that of
Bitcoin’s blockchain. Note that we altered one field. The block in the proposed
scheme is made up of the block header and verification field. The block header is
composed of the block size, version, previous block header hash, and merkle root.
The verification field consists of the verification counter, merkle tree, verification
log, model name, firmware version, and verifier. Details of the field are given
below.

– Verification counter: This is the number of successful verifications. It is a
value which is only considered in a normal node’s block. It is similar with the
block height in Bitcoin [9]. In a verification node, this value is fixed at 0.

– Merkle tree: It is a tree information for the calculation of the merkle root.
It is used for the verification of block data. It is also used as a feature for
managing memory of node efficiently [4].

– Verification log: It is a verification log composed of the verification time
(timestamp), request node’s ID, and response node’s ID. If a verification
node responses for the request message, the request node’s ID and verifica-
tion node’s ID are stored to this field. In addition, this field includes the
signature of the request node using a private key so that all nodes can verify
the signature.



58 B. Lee et al.

– Model name: It is a normal node’s model name.
– Firmware version: It is a normal node’s current firmware version.
– Verifier: It is a hash value of a firmware file. This value is used to verify

the firmware integrity without comparing genuine files. Each node stores a
verifier in the verification field of the block. If the firmware file is composed
of more than one file, then those should be concatenated before generating
the verifier.

3.4 Cryptographic Ideas

The proposed scheme uses cryptographic schemes to encrypt a verifier to be
transmitted, verify a signature, and exchange a session key.

– Data encryption and key exchange: When ni requests firmware verification,
ni generates private key a, and selects random point of Elliptic curve P [10].
The public key aP is generated by multiplying a and P. The public key is
used to encrypt a verifier. If ni needs to update, its firmware is updated by
the firmware update server. For this, Elliptic Curve Diffie-Hellman (ECDH)
is used to generate the session key for encrypting the latest firmware file being
transmitted from the firmware update server to the embedded device.

– Digital signature: When ni signs its verification log using the private key of
ni, any node can verify this log with a corresponding public key.

3.5 Procedure

As mentioned, the proposed scheme has the two cases: C1 and C2. The case C1
is then divided into two sub cases (C1-1 and C1-2), while the case C2 is also
similarly separated into C2-1, C2-2, and C2-3. The cases are set into motion
after a node requests to verify its firmware. Hereafter we assume that ni and nj

are the request node and response node, respectively.

C1. When ni transmits the request message to the blockchain network and a
verification node responds to the request, C1 starts. C1 has two different sub-
cases.

– C1-1: It starts when ni has the latest firmware.
– C1-2: It starts when ni does not have the latest firmware.

When a verification node receives the request message, it checks whether ni’s
firmware is latest or not. If ni uses the latest firmware, then the firmware integrity
is verified by exchanging each other’s public key and comparing their verifiers.
On the other hand, ni requests the update operation to a firmware update server,
which provides the latest firmware file, which is encrypted with a session key.
Figures 3 and 4 show the procedures of C1-1 and C1-2.



Firmware VerifiCation of Embedded Devices Based on a Blockchain 59

Fig. 3. Procedure of C1-1: ni has the latest firmware

Fig. 4. Procedure of C1-2: ni does not have the latest firmware

C2. The verification is performed among normal nodes in C2. Contrary to C1, nj

is not a verification node in C2. In C1, authenticity of a verifier is not considered
since the verification node is managed safely by the firmware update server.
However, in C2, the legitimacy of a verifier must be considered. To confirm
the reliability of nj ’s verifier, the Proof of Work (PoW) used in Bitcoin [4] is
utilized in the proposed scheme. When nj receives a request message, nj asks
other nodes to join the verification process by sending a join message. And other
nodes perform the PoW stage. After completing the PoW, they add the request
node’s ID, response node’s ID, and current time to the verification log in their
blocks and then broadcast a verification log message to the blockchain network.
If nj receives the verification log messages from more than six other nodes, nj

responds with a request message of ni. In this regard, the six nodes ensure nj ’s
verifier by collaborating with each other for this verification process. The C2 has
three different sub-cases.

– C2-1: It starts when ni’s firmware version is higher than nj ’s firmware version.
– C2-2: It starts when ni’s firmware version and nj ’s firmware version are equal.
– C2-3: It starts when ni’s firmware version is lower than nj ’s firmware version.



60 B. Lee et al.

If each firmware version is equal, the verification process is performed as like
C1-1. If one node has a lower version of the firmware than the other node, it
requests updating its firmware to the firmware update server. Figures 5, 6 and 7
show the detail.

After the end of firmware verification, the request node makes its verification
log including request node’s ID, response node’s ID, timestamp, etc. The request

Fig. 5. Procedure of C2-1: ni’s firmware version is higher than nj ’s one

Fig. 6. Procedure of C2-2: ni’s firmware version is equal with nj ’s one

Fig. 7. Procedure of C2-3: ni’s firmware version is lower than nj ’s one



Firmware VerifiCation of Embedded Devices Based on a Blockchain 61

node then broadcasts it to the blockchain network. Consequentially, it enables
to validate the firmware integrity and decide whether the update firmware on
the device requires or not without a user’s control.

4 Conclusion

In this paper, we presented the proposed scheme that provides a secure firmware
verification of an embedded device among blockchain nodes in the network. The
proposed scheme guarantees that the embedded device’s firmware is not tam-
pered and latest. The effects of attacks targeting known vulnerabilities are thus
minimized. For firmware updating, a firmware file is transmitted from a firmware
update server to an embedded device. As a next work, we will study how to
replace the client-server model for firmware file transmissions with a P2P net-
work model.

Acknowledgment. This work was supported by Basic Science Research Program
through the National Research Foundation of Korea (NRF) funded by the Ministry of
Science, ICT and Future Planning (NRF-2014R1A1A1006770).

References

1. Gartner: Gartner Says 4.9 Billion Connected Things Will Be in Use in 2015. Gart-
ner Newsroom, November 2014

2. Firmware - Wikipedia. https://en.wikipedia.org/wiki/Firmware
3. Choi, B.-C., Lee, S.-H., Na, J.-C., Lee, J.-H.: Secure firmware validation and update

for consumer devices in home networking. IEEE Trans. Consum. Electron. 62(1),
39–44 (2016)

4. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2009), Unpublished
Manuscript

5. Blockchain Bitcoin Wiki. https://en.bitcoin.it/wiki/Blockchain
6. Hu, Y., Perrig, A., Johnson, D.B.: Efficient security mechanisms for routing pro-

tocols. In: Proceedings of the NDSS 2003, February 2003
7. Badev, A., Chen, M.: Bitcoin: Technical Background and Data Analysis. Federal

Reserve Board, Washington, D.C. (2013)
8. Bider, D., Baushke, M.: SHA-2 data integrity for the secure shell (SSH) transport

layer protocol. IETF RFC 6668, July 2012
9. Antonopoulos, A.M.: Mastering Bitcoin: Unlocking Digital Cryptocurrencies.

OReilly Media, Sebastopol (2014)
10. Blake-Wilson, S., Bolyard, N., Gupta, V., Hawk, C., Moeller, B.: Elliptic Curve

Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS). IETF
RFC 4492, May 2006

https://en.wikipedia.org/wiki/Firmware
https://en.bitcoin.it/wiki/Block chain

	Firmware Verification of Embedded Devices Based on a Blockchain
	1 Introduction
	2 Blockchain
	2.1 Block
	2.2 Cryptographic Idea

	3 Proposed Firmware Validation Scheme
	3.1 Overview
	3.2 Assumptions
	3.3 Block Structure
	3.4 Cryptographic Ideas
	3.5 Procedure

	4 Conclusion
	References


