A Design of the Event Trigger for Android
Application

Ting Hu, Zhuo Ning, and Zhixin Sun™?

Key Laboratory of Broadband Wireless Communication and Sensor Network
Technology, Nanjing University of Posts and Telecommunications,
Nanjing, China
sunzx@njupt. edu. cn

Abstract. The exploding of Android malware makes security analysis more
important and urgently calls for automation in its analysis. Often automation
analysis includes static and dynamic methods. And an important work of the
dynamic analysis is gathering accurate behavior information of Android apps.
However, traditional methods, which are used to inject random events to
exercise the user interface, can not capture the behavior triggered by the event.
To overcome the above shortcomings, this paper designs a framework of the
Android malware detection based on cloud and focuses on how to design an
Event Trigger to trigger more behaviors. This method can enlarge the dynamic
analysis scope to find more information of malicious behaviors.

Keywords: Android malware - Dynamic analysis + Event Trigger

1 Introduction

In recent years, smart phone sales have grown tremendously. Until the first quarter of
2015, according to the report from Gartner, worldwide sales of smart phones to end
users have reached 336 million [1]. Among various platforms, Google’s smart phone
platform, Android, has captured more than 75% of the total market-share. In another
word, it is the most popular operating system at present. Unfortunately this explosive
growth also has drawn the attention of cyber criminals who try to trick the user into
installing malicious software on the device.

Android terminal stores a lot of personal information, such as contacts, messages,
social network access, browsing history and banking credentials, so it has become a
prime target for malicious attacks. Android malwares such as premium rate SMS
Trojans, spyware, botnet, aggressive adware and privilege escalation attack have
reported exponential rise from the Google Play store and well known third-party
market places. According to the statistics from Kasper sky, the number of malicious
Android applications topped the 10 million mark in January 2014 [2]. These malicious
applications pose a great security risk to mobile phone owners and solving the security
issue of Android has become a hot topic in the field of information security.

Given the enormous growth of Android malware, security researchers and vendors
must analyze more and more applications (apps) in a given period of time to understand
the purpose of the software and to develop countermeasures accordingly. Through the

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
J.-H. Lee and S. Pack (Eds.): QShine 2016, LNICST 199, pp. 426-434, 2017.
DOLI: 10.1007/978-3-319-60717-7_42



A Design of the Event Trigger for Android Application 427

efforts of researchers, Android security has made much progress both in static and
dynamic analysis [3]. The classical approach to automated analysis of suspicious
applications is static analysis. Static analysis investigates software properties that can
only be investigated by inspecting the downloaded app and its source code [4].
A typical example of it is signature based detection similar to the common approach of
antivirus [5]. However, malware usually uses obfuscation techniques to puzzle static
analysis [6, 7]. Thus dynamic analysis does not inspect the source code, but rather
executes it within a controlled environment, often called sandbox to get a more
accurate result. By monitoring and logging every relevant operation of the execution
(such as sending SMS messages, reading data from storage, and connecting to remote
servers), an analysis report is automatically generated. Dynamic analysis can combat
obfuscation techniques rather well, but it is thwarted by runtime detection methods.
Therefore, combing the static and the dynamic usually makes sense in practice.

A big problem of dynamic analysis is how to trigger malicious behaviors as many
as it can, especially for those one which could not be triggered just by installing the
application. And some behaviors can not be triggered except for particular interaction.
Generally, for each Activity, Monkey [8] is used to inject random UI events to exercise
the user interface. Furthermore, some behaviors of Android apps are triggered by
events, such as the arrival of new SMS and location change, which sometimes could
not be triggered by random event streams. Our Event Trigger can inject in-time fake
events at the most appropriate execution time, which can enlarge the scope for ana-
lyzing Android apps and make the report more accurate.

Last but not least, static analysis, dynamic analysis and other processes of our
research require a large amount of computing resource. Therefore, we deploy the core
solution on the cloud to provide the parallel service for a large number of smart phones.

2 Background

In order to automatically install the application and simulate the user operation in the
actual equipment or simulator, most of the detection schemes used automatic control
scripts. For instance, TaintDroid [9], DroidBox [10], AppPlayground [11], Pup-
petDroid [12], Andrubis [13] and Mobile-Sandbox [14] used the MonkeyRunner
provided by Android SDK, which could generate enough random User Interface
(UI) events to ensure a large number of interactive behaviors are triggered. However,
the event frequency of different applications varies considerably, and the random UI
events can not target the application’s vulnerability. DroidTrace solved the problem in
a different way. It triggered different dynamic loading behaviors by physical modifi-
cation. Firstly, it found the function which loaded other functions dynamically; then
inserted the trigger code into these functions to generate forward execution path; finally
packaged this app as a new application [15]. In this way, DroidTrace can trigger
targeted behaviors, but it was not a real-time solution. Both of the above two methods
can not trigger behaviors which can only be triggered by particular events. For
example, if the user moved to a new place, the location will be changed, and such
location change event cannot be achieved by both DroidTrace and automatic control
script. Another example of the event trigger is receiving short messages and calls. All



428 T. Hu et al.

these events could trigger some malicious behaviors of application, such as leaking the
location change or the received new SMS.

To overcome the above shortcomings, an event trigger is explored. It injects
recurrent fake events, including the arrival of new SMS, calls and location changing, to
trigger the malicious behaviors as many as possible during the execution. Compared
with the ordinary, it can perform in-time event injection at the most appropriate time,
for not only callbacks listed in the Manifest but also API callbacks that invoked at
runtime. At the same time, it provides more behavior analysis information for the
developers or users to promote the accuracy.

Currently, there is a tendency to malware detection service from the host terminal to
the cloud. Cloud computing is the development product of distributed computing,
parallel computing and utility computing. It congregates large numbers of computation
resources and provides on-demand IT services to the remote Internet users. Wang et al.
[16] provided a new android multimedia framework based on Gstreamer. It can greatly
improve the multimedia processing ability in terms of efficiency, compatibility, fea-
sibility and universality. Cloud resources and their loads possess dynamic character-
istics. Zuo et al. [17] proposed a scheduling method called interlacing peak which can
balance loads and improve the effects of resource allocation and utilization effectively.
Meanwhile they proposed a Self adaptive threshold based Dynamically Weighted load
evaluation Method (termed SDWM) [18]. It evaluates the load state of the resource
through a dynamically weighted evaluation method. For task-scheduling problems in
cloud computing, a multi-objective optimization method is also proposed [19]. In this
paper, we deploy the core solution on the cloud to provide the parallel service.

The paper is organized as the following. The second section discusses the imple-
ment of it in details, including the process design, the communication architecture and
the function module. In the third section a security detection architecture based on
cloud is designed accordingly.

3 Event Trigger Implementation

3.1 Process of the Event Trigger

The Event Trigger runs in the sandbox when faking events, while its specific process is
shown in Fig. 1.

Step 1: Firstly, the application manifest file (AndroidManifest.xml) will be analyzed
to extract API list of registered callback functions, which are predefined event
functions;

Step 2: Running an application in the sandbox and notifying the Event Trigger to
inject related events when a callback function is registered through the API;

Step 3: The Event Trigger injects related fake events, and then the hardware device
will detect the occurrence of the event and notify the application to update the latest
information.



A Design of the Event Trigger for Android Application 429

Uploading app

A 4

Analyzing AndroidManifest.xml

v
Creating API Lists

Registering Callbacks

Injecting Fake Events

A

Updating Information

Application Running

Fig. 1. Process of the Event Trigger

3.2 Communication Architecture of the Event Trigger

The class that implements the service in the Android framework layer is Man-
agerService. ServiceManager is another class dedicated to the management of system
services. And it is responsible for the registration and management of all system
services. Both of them communicate via the Binder protocol. When the application
calls for a system service, it needs to invoke the service through the service agent and
then sends a request to the system server process via the inter process communication,
then the process is responsible to return the results. The entire communication archi-
tecture is shown in Fig. 2. For example, the Event Trigger will automatically inject fake
location change events when the corresponding callbacks are registered through the
LocationManager._requestLocationUpdates() APL. Then the location change monitor-
ing request is delegated to LocationManagerService via the Binder protocol, which will
notify LocationManagerService immediately to fake a location change event. Finally,
the hardware will detect an event occurred and notice the application to update the



430 T. Hu et al.

' Sandb i .
! ancox : Location Other
i Event Trigger i Manager Manager
| v i Service Service
| app i A 7\
' \ A 4 : \ 4 \ 4
i Android Framework
o A

v !

Binder IPC

Fig. 2. Framework of the Event Trigger in Android

latest information. Thus, the registered callback could be triggered for execution to
enlarge the dynamic analysis scope to find more information of malicious behavior.

3.3 Function Module of the Event Trigger

The Event Trigger includes a manifest parsing module, an event pre-triggering module,
an event faking module, and an event triggering module, as shown in Fig. 3.

Manifest Parsing Module

e 1

Event Pre-triggering Module

'

Event Faking Module
v Application
Event Triggering Module Running

Fig. 3. Function module diagram of the Event Trigger



A Design of the Event Trigger for Android Application 431

Manifest Parsing Module, which parses the application manifest file
(AndroidManifest.xml) to extract API list of registered callback functions, namely the
predefined some event functions.

Event Pre-triggering Module, which will send a request to the Event Faking
Module to inject corresponding false events when an application wants to use a system
service, the callbacks of which will be registered through the API, that is, some of the
predefined event functions will soon be called.

Event Faking Module, which could perform in-time event injection when received
the request information for fake events. The fake events include not only callbacks
listed in the Manifest but also API callbacks that invoked at runtime.

Event Triggering Module, which could trigger fake events and the hardware will
sniff an event occurred and notice the application to update the latest information. Thus,
the registered callback could be triggered for execution to enlarge the dynamic analysis
scope to find more information of malicious behavior.

The fake events include location change, the arrival of new SMS, receiving calls,
etc. in the Event Faking Module. Take the location change injection as an example, the
whole process of which is running in the process of the sandbox. The Event Faking
Module could firstly fake current geographic coordinates (Android simulator in
sandbox cannot automatically position coordinates) when received the request infor-
mation for location injection from the Event Pre-triggering Module. Secondly, a series
of location information initialization: location initialization, interface initialization,
search module initialization, data initialization and so on, are prepared for the location
change. Then run the thread to set the coordinate information of the location change.
Finally, destroy the geographic coordinate information after the location change event
is triggered and wait for the next trigger.

4 The Security Detection Architecture for Android
Application

In this paper, we intend to develop an Android malware detection system, which
includes the client and the server with a synergy framework based on cloud.

The Client. Prototype system installs itself as the Android app on the user’s smart
phone to detect the specific software. Users can upload the Android APK file to the
cloud manually.

The Cloud. The static analysis and the dynamic analysis of our research require a large
amount of computing resource. Therefore, we deploy the core solution on the cloud to
provide the parallel service for a large number of smart phones. We suggest that each
end host run a lightweight process to acquire executables entering a system, send them
into the network for analysis, and then run or quarantine them based on a threat report
returned by the network service. The system monitors the dangerous functions. When
sufficient evidences are found, the request/response manager will upload the suspicious
applications. The cloud server is responsible to detect the vulnerability and mali-
ciousness of the uploaded app. After the completion of detection, it will return back the
evaluation information. Finally, the App manager will determine the next steps to be



432 T. Hu et al.

taken. The Event Trigger runs in the sandbox when faking events. The architecture of
the synergy framework is shown in Fig. 4.

Third-party market Google Play

=

reports
Smartphone .

Cloud Server Event Trigger

” Sandbox

Fig. 4. Deployment of the security synergy detection framework.

This paper uses open source cloud computing platform Eucalyptus established by
Santa Barbara universities to achieve specific architecture [20]. And we use virtual
machine nodes in the cloud to implement parallel distributed detection with dynamic
and static analysis. Meanwhile, the enclosed environment in virtual machine nodes is
used to construct the corresponding event triggers to monitor dynamic behavior in the
sandbox. The distributed Propagation of Information with Feedback (PIF) protocol
algorithm is used to formally describe the procedure of dynamic analysis and analysis
report return.

Our experiment results show that in many cases we can: detect the existence of
trigger-based behavior, find the conditions that trigger such hidden behavior, and find
inputs that satisfy those conditions and advance its performance.



A Design of the Event Trigger for Android Application 433

5 Conclusion

In this paper, we propose an Event Trigger which can automatically trigger the
application event behaviors. Compared with existing event injection techniques, our
technique could perform in-time event injection at the most appropriate time, for not
only callbacks listed in the Manifest but also API callbacks that invoked at runtime.
With the help of runtime injected events, the scope of the dynamic analysis is enlarged,
and the accuracy is also promoted.

Though many techniques are introduced to drive the application execution, it is
worth noting that our Event Trigger could not guarantee a complete coverage over all
possible behaviors. Generally it is a difficult problem for all dynamic analysis work.
This paper tries to design a better behavior approximation for analyzing Android apps,
and leaves the coverage problem as our future work.

Acknowledgments. This paper was supported by the National Natural Science Foundation of
China (Nos. 61170276, 61373135) and the Key University Science Research Project of Jiangsu
Province (Grant No. 12KJA520003).

References

1. Gartner, Inc.: Gartner Says Emerging Markets Drove Worldwide Smartphone Sales to 19
Percent Growth in First Quarter of 2015. http://www.gartner.com/newsroom/id/3061917

2. Kaspersky, Lab.: Number-of-the-week-list-of-malicious-Android-apps-hits-10-million (2014).
http://www.kaspersky.com/about/news/virus/2014/Number-of-the-week-list-of-malicious-
Android-apps-hits-10-millon

3. Enck, W.: Defending users against smartphone apps: techniques and future directions. In:
Jajodia, S., Mazumdar, C. (eds.) ICISS 2011. LNCS, vol. 7093, pp. 49-70. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-25560-1_3

4. Application Exerciser Monkey. http://developer.android.com/tools/help/monkey

5. Schmeelk, S., Yang J., Aho, A.: Android malware static analysis techniques. In: 10th Annual
Cyber and Information Security Research Conference, pp. 1-2. ACM, New York (2015)

6. Batyuk, L., Herpich, M.: Using static analysis for automatic assessment and mitigation of
unwanted and malicious activities within Android applications. In: Malicious and Unwanted
Software (MALWARE), pp. 66-72. IEEE, Fajardo (2011)

7. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection. In:
Proceedings of the 23rd Annual Computer Security Applications Conference (2007)

8. Willems, C., Freiling, F.C.: Reverse code engineering—state of the art and countermeasures.
it-Inf. Technol. 53-63 (2011)

9. Enck, W., Gilbert, P., Chun, B.-G., Cox, L. P., Jung, J., McDaniel, P., Sheth, A.N.:
TaintDroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. In: Proceedings of the USENIX Symposium on Operating Systems Design and
Implementation (OSDI), October 2010

10. Dynamic analysis of Android apps. https://github.com/pjlantz/droidbox

11. Rastogi, V., Chen, Y., Enck, W.: Appsplayground: automatic security analysis of
smartphone applications. In: Proceedings of the Third ACM Conference on Data and
Application Security and Privacy, CODASPY 2013. ACM, New York (2013)


http://www.gartner.com/newsroom/id/3061917
http://www.kaspersky.com/about/news/virus/2014/Number-of-the-week-list-of-malicious-Android-apps-hits-10-millon
http://www.kaspersky.com/about/news/virus/2014/Number-of-the-week-list-of-malicious-Android-apps-hits-10-millon
http://dx.doi.org/10.1007/978-3-642-25560-1_3
http://developer.android.com/tools/help/monkey
https://github.com/pjlantz/droidbox

434

12.

13.

14.

15.

16.

17.

18.

19.

20.

T. Hu et al.

Gianazza, A., Maggi, F., Fattori, A., Cavallaro, L., Zanero, S.: PuppetDroid: a user-centric
UI exerciser for automatic dynamic analysis of similar android applications. CoRR, vol.
abs/1402.4826, 2014

Lindorfer, M., Neugschwandtner, M., Weichselbaum, L., Fratantonio, Y., van der Veen, V.,
Platzer, C.: Andrubis-1,000,000 apps later: a view on current Android malware behaviors.
In: Proceedings of the 3rd International Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security, BADGERS (2014)

Spreitzenbarth, M., Schreck, T., Echtler, F., Arp, D., Hoffmann, J.: Mobile-Sandbox:
combining static and dynamic analysis with machine-learning techniques. Int. J. Inf. Secur.
14(2), 141-153 (2015). Springer, Berlin

Zheng, M., Sun, M., Lui, J.C.S.: DroidTrace: a ptrace based Android dynamic analysis
system with forward execution capability. In: Wireless Communications and Mobile
Computing Conference IWCMC), pp. 128-133. IEEE Press, Nicosia (2014)

Wang, H., Hao, F., Zhu, C., Rodrigues, J.J.P.C., Yang, L.T.: An android multimedia
framework based on Gstreamer. In: Rodrigues, J.J.P.C., Zhou, L., Chen, M., Kailas, A. (eds.)
GreeNets 2011. LNICSSITE, vol. 51, pp. 51-62. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33368-2_5

Zuo, L., Shu, L., Dong, S., Zhu, C., Han, G.: A multi-queue interlacing peak scheduling
method based on tasks classification in cloud computing. IEEE Syst. J. (2016)

Zuo, L., Shu, L., Dong, S., Zhu, C., Zhou, Z.: Dynamic weighted load evaluation model
based on self-adaptive threshold in cloud computing. ACM Mob. Netw. Appl. 1-15 (2016)
Zuo, L., Shu, L., Dong, S., Zhu, C., Hara, T.: A multi-objective optimization scheduling
method based on the ant colony algorithm in cloud computing. IEEE Access 3, 2687-2699
(2015)

HPE Helion Eucalyptus. https://github.com/eucalyptus


http://dx.doi.org/10.1007/978-3-642-33368-2_5
http://dx.doi.org/10.1007/978-3-642-33368-2_5
https://github.com/eucalyptus

	A Design of the Event Trigger for Android Application
	Abstract
	1 Introduction
	2 Background
	3 Event Trigger Implementation
	3.1 Process of the Event Trigger
	3.2 Communication Architecture of the Event Trigger
	3.3 Function Module of the Event Trigger

	4 The Security Detection Architecture for Android Application
	5 Conclusion
	Acknowledgments
	References


