Adaptive Genetic Algorithm to Optimize
the Parameters of Evaluation Function
of Dots-and-Boxes

Fangming Bi, Yunchen Wang, and Wei Chen®™®

School of Computer Science and Technology,

China University of Mining and Technology,

Xuzhou City 221116, Jiangsu Province, China
{bfm, wyc, chenw}@cumt. edu. cn

Abstract. Designed an evaluation function with parameters, and used genetic
algorithm to optimize the parameters. This paper considers the objective func-
tion’s variation trends in searching point and the information is added to the
fitness function to guide the searching. Simultaneously adaptive genetic algo-
rithm enables crossover probability and mutation probability automatically
resized according to the individual’s fitness. These measures have greatly
improved the convergence rate of the algorithm. Sparring algorithm is intro-
duced to guide the training, using gradient training programs to save training
time. Experiments show skills in playing Dots-and-Boxes are greatly improved
after its evaluation function parameters are optimized.

Keywords: Adaptive genetic algorithm - Evaluation function - Game

1 Introduction

Machine game is an important branch of artificial intelligence research and has been
hailed as drosophila in the field. Computer Game System can be divided into four parts:
situation represents, action set, the evaluation function and game tree search. Search
algorithm is the basic method to solve the problems in artificial intelligence. Minimax
theorem proposed by Von Neumann and Boerl in the 1920s is the mathematical basis
for searching algorithm. Alpha-beta pruning algorithm which began in the 1950s is a
big step forward in the search efficiency. PVS (Principal Variation Search, also known
as NegaScout) search algorithm in 1980 has higher search efficiency than alpha-beta
search algorithm when the game tree is strong orderly [1]. MTD(f) algorithm appeared
in 1994, always with an empty window detection approaching true value, complete
search with the help of “Transposition Table”, is slightly better than the PVS search.
Both are the current mainstream method. Most game trees are so large that unable to

F. Bi—Fund Project: National Natural Science Foundation and Shanxi Provincial People’s
Government Jointly Funded Project of China for Coal Base and Low Carbon (No. U1510115),
the Qing Lan Project, the China Postdoctoral Science Foundation (No. 2013T60574).

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
J.-H. Lee and S. Pack (Eds.): QShine 2016, LNICST 199, pp. 416-425, 2017.
DOLI: 10.1007/978-3-319-60717-7_41

Adaptive Genetic Algorithm to Optimize the Parameters 417

complete the search. Conventional measure is to search for a certain depth, then the leaf
node is approximately evaluated by evaluation function. The quality of the evaluation
function directly affects the development of the situation [2]. If search engine is the
game system’s eyes, the evaluation function would be the system’s brain. Evaluation
function generally must contain elements of five aspects, that is fixed pawn value, pawn
position value, pawn flexibility value, threats and protect value, dynamic adjustment
value, and the value of each aspect is composed of a number of parameters. Combi-
nation of the above parameters in the evaluation function is often dependent on the
programmer’s own knowledge and experience which makes it difficult to achieve the
optimal. Some scholars have introduced genetic algorithm into the evaluation function,
trying to learn the dynamic relation between the pieces, but the effect is not very
satisfactory. In this paper we take the dots-and-boxes as example, design an evaluation
function, use adaptive genetic algorithm [3] to optimize evaluation function parameters.
In order to enhance the local searching ability of genetic algorithms, knowledge of
problem domain is added to the fitness function [4]. Our study has been organized as
followings: Sect. 2 specify the challenges for genetic algorithm to be applied to opti-
mization of evaluate function parameters and gives the scheme of genetic algorithm
that we used in this paper and describes the adaptive genetic algorithm; Sect. 3
describes the experimental strategies and presents the experimental results; Sect. 4 is
the conclusion of this paper.

2 Solutions of Genetic Algorithm Applied to Optimization
of Evaluate Function Parameters

2.1 Challenges for Genetic Algorithm to Use in Game

The genetic algorithm was proposed by professor Holland at the University of
Michigan in American in 1969 and formed a type of simulated evolutionary algorithm
after summarized by Dejong, Goldberg et al. In recent years, Genetic Algorithm as an
important part of the intelligent computing (neural networks, fuzzy processing and
evolutionary computation), has been a focus of research and made very good results in
the field of application such as more extreme value function optimization problems,
combinatorial optimization problems, scheduling problems and so on.

Traditional hill-climbing algorithm finds the optimal solution by comparing with
neighboring nodes, and is restricted by ranges of initial samples and single direction
searching, and is easy to fall into local optimum [5].

Simulated annealing is a stochastic optimization algorithm based on the Monte-Carlo
iterative solution strategies. It attempts to simulate the high temperature object annealing
process to find the global optimal solution or the approximate global optimal solution. It
can avoid local minima, but the fatal flaw is too slow, running too long [6].

Ant colony algorithm (ACO) converges on the optimization path through pher-
omone accumulation and renewal. It has the ability of parallel processing and global
searching and the characteristic of positive feedback. But the convergence speed of
ACO is lower at the beginning for there is only little pheromone difference on the path
at that time.

418 F. Bi et al.

Genetic Algorithm has a high degree of parallel, weak dependence on initial value
and the quick global searching ability. Its robustness is also significantly better than the
previous two algorithms. But it has such disadvantages as premature convergence, low
convergence speed and so on. To used in game, these disadvantages will be amplified
in particular as the fitness of the generation depends on the game result. With the
increase of the degree of evolution, it will take more rounds to fight it out. In view of its
weakness, in this paper, the first-order differential information of adjacent two gener-
ations of the objective function was added into the fitness function to strengthen the
search ability and prevent premature. The adoption of the adaptive genetic algorithm
greatly improved the convergence speed. So it is most likely to succeed in
Dots-and-Boxes.

2.2 Parameter Selection and Coding Scheme of the Evaluation Function

Dots-and-Boxes starting with an empty grid of dots, players take turns, adding a single
vertical or horizontal line between two adjacent dots. A player who completes the
fourth side of a 1 x 1 box earns one point and takes another turn. The game ends when
no more lines can be placed. The winner of the game is the player with the most points.

The design of evaluation function of Dots-and-Boxes typically rely on several
theorems [7], introduced as following.

Theorem 1. Regardless of the initial size of the board, there is always the following
equation holds:

Dots + Doublecrosses = Turns

where Dots is the number of point of the initial board, Doublecrosses is the number of
doublecross in the whole play and Turns is the total number of rounds to go through in
the whole play.

Theorem 2. If total number of the board nodes is odd, then the Upper Hand side must
form an odd number of Long Chain in order to win, and the After Hand side must form
an even number Long Chain for win, and vice versa.

Theorem 2 is known as Long-Chain Theorem, and it is an important basis for the
design of the evaluation function. Take 4 x 4 chessboard as example, according to
Long-Chain Theorem, the Upper Hand side must form an odd number of Long Chain
in order to win. Suppose that after the Upper Hand moves, it forms the situation (there
are two Long-Chains marked as a, b) as shown in Fig. 1(a). So, no matter what strategy
the After Hand to take, the final chain will be captured by the Upper Hand who is in a
dominant position. However, relying solely on the Long-Chain theorem can not
guarantee the accuracy of evaluation function. For example, suppose after the Upper
Hand moves, it forms the situation as shown in Fig. 1(b) where there are also two long
chains (marked as a, b), but the opponent simply select the edge numbered 1 in the
Fig. 1(b), then the situation reverses, and the Upper Hand are in absolute disadvantage.

Adaptive Genetic Algorithm to Optimize the Parameters 419

1,
(2) (b)

Fig. 1. An even number of Long-Chain case

The above analysis shows that the valuation depends on the combination of a variety
of board elements and is sensitive to the parity of the number of board elements. So, we
design the following evaluation function.

v(ry,12,13. . .1) = Zil A{}Al;ril (1)
where 1; = n; mod 2, n; represents the number of the i-th type of board elements in the
current chess game; A;jj, Ajp is the parameter of the i-th type of chess-type; N is the
number of types of different board elements. In this article, we select some main board
elements as Long-Chain, Short-Chain, DoubleCross, boxes with Freedom Degree of 3
and 4, so N equals 5.

Encode each parameter A;; with 6 bit binary code, a total of 60 bits constitute a set of
chromosomes string.

2.3 Calculation of the Fitness Function and Population Selection

Fitness is a main indicator that describes the individual performance and genetic
algorithm select the fittest individuals based on it. Selection of the fitness function
determines the algorithm optimization orientation and has a great impact on the con-
vergence of the algorithm and the convergence rate.

We use the following method to design objective function. Let each individual play
with an existing game algorithm (sparring algorithm), then determine the value of the
objective function according to the number of rounds per game takes. If we win, the
fewer the number of rounds is, the greater the function of the value should be; if the
other side wins, then the more the number of rounds is, the greater the value of the
function should be. Therefore, the objective function is designed as follows.

60 + M we wins
f(x) = X the other side wins (2)
60 draw

where x is the number of rounds of a game, k is adjustable coefficient that represents
the importance of the number of rounds to fitness when we wins. Here take k = 6. The
fitness function is mapped directly from the objective function, namely:

420 F. Bi et al.

fit(x) = f(x) (3)

In order to fully considering the trend of the objective function, preventing the pre-
ferred chromosome hovering only in a relatively flat area in genetic process which
would cause “premature”, and we put the first difference of the objective function of
adjacent generations to join in, using the following new fitness function [4]:

: fit(x) — fitmin

, VE(x) — Viin
fit(x) = .-
: (X) ¢ fitmax - fitmin

-8 G g

4)

where weights € € [0, 1] called the control factor, to reflect the importance of values of
the fitness function and the rate of change of the function in solving this problem. fit(x)
is the original fitness function. fity;, and fity,x denote respectively the minimum and
maximum value of individual fitness in the current generation of the population. Vfity;,
and Vfit,,, are defined as:

ViE(x) = f(xP) — £(x°) (5)
Vimin = min{f(v]) — £(v§),....f(v2) — f(v$)} (6)
Vimax = max{f(V}) — £(v§),....f(v2) — f(v)} (7)

where xP, x¢ denote the parent and offspring chromosomes respectively, n represents
the size of the population.

2.4 Crossover and Mutation Operation

There are many crossover methods, single-point crossover, multi-point cross, sequence
cross, cycle cross, etc. For convenience, we use single-point crossover, randomly select
one of the binary bits in the chromosome as a cross point, then cross the two parameters of
the parent individuals to form the sub’s parameters [8]. Each parameter’s cross rate is pe.

Each parameter is mutated at variation rate p,,. Because of the use of the binary
string representation, here just flip 0-1 for the gene according to the gene mutation rate.
Mutation is a local random search, in conjunction with the selection/crossover to ensure
the effectiveness of the genetic algorithm and maintain the diversity of the population at
the same time, to prevent the emergence of non-mature convergence.

Here choosing to operate each parameter in the chromosome is due to that a
chromosome contains many parameters. If directly operate the entire chromosome,
some parameters may not get enough crossover and mutation which makes the con-
vergence time become longer and the effect is not ideal.

2.5 Adaptive Genetic Algorithm

The convergence of the genetic algorithm is affected by crossover rate p. and mutation
rate pp,. The larger the cross rate, the faster the rate of new individuals to produce. But

Adaptive Genetic Algorithm to Optimize the Parameters 421

if the crossover rate is too large, it is not conducive to the protection of chromosome
structure of the current high fitness individuals. But if the crossover rate is too low, the
individual evolution is too slow and the search process is stalled. For the mutation rate,
if it is too low, it’s not conducive to generate new individuals and easy to fall into local
optimum search; If it is too high, the genetic algorithm can easily degenerate into a
random search algorithm. Since there is no fixed way to determine p. and py,, the
optimization can only be optimized through continuous experiment and this process is
very fussy. To this end, we introduce adaptive genetic algorithm which can automat-
ically adjust with individual fitness [9, 10]. Here are the formulas of p. and py,:

R () po 5
Pc = / ()
pcl f < favg
- fmax—f
P, = Pmi — (B f,irzz—)i‘avg Lo fave 9)
" Pmi f<fyvg

where p.; = 0.9, peo = 0.6, pr1 = 0.1, pr = 0.001. £« is the group’s largest fitness
value. f,,, is the average fitness value of each generation of the population. ' is the
greater fitness value of the two individuals to cross. f is the fitness value to the mutation
individual. Expression analysis shows that when it is closer to the maximum fitness
value, the value of p. and p,, is smaller, and this reduces the possibility of good genes
being destroyed and ensure the convergence of the algorithm.

3 Experimental Testing and Results

3.1 Experimental Strategies

Adaptive genetic algorithm requires a lot of training to get a better race result, time is
the key factor that must be considered. In this paper, we take gradient training method
to achieve the purpose that takes less time to achieve better results. It specifically
includes three aspects, gradually increase the search depth of the game algorithm;
gradually increase the intensity of sparring algorithm and choosing an efficient game
tree search algorithm.

Search depth has an enormous influence on the time, in the beginning, due to
evaluation function parameters have not been effectively optimized, even if searching a
great depth the estimates are still not accurate. Therefore, the time cost is too high.
However, when the function parameters are effectively optimized, if the search depth is
still not corresponding increase, chess will not be able to better enhanced, genetic
algorithms will think this is because of the current individual’s gene is not good, so it
continue evolution and then convergence time will increase.

Sparring algorithm will also affect the accuracy of the training results and time. If
sparring algorithm is too strong in the beginning, choice to the genetic algorithm tend
to be simplify. If sparring algorithm is always weak, it’s not conducive to choose the
best individual. If always use the same kind of sparring algorithm, it’s easy to fall into

422 F. Bi et al.

local optimum. In this paper, the different stages of the training use different intensity of
sparring algorithm and in the training process, the evaluation function is interspersed
with random parameters to prevent the search into the local optimum.

The strength of sparring algorithm is reflected in two aspects - the accuracy of the
evaluation function and the depth of the search. At the start of training, we use the
evaluation function designed according to our own experience. After the training
reaches a certain stage, we use the evaluation that is consistent with the sparring
algorithm, and at this time, we use the depth of search to distinguish the skill in playing
chess. In the early, middle, late stage of the training, take 2, 5, 7 as the search depth of
the genetic algorithm, and 2, 8, 10 as the sparring algorithm’s. Now, we need choosing
an efficient search algorithm.

In 1978, Stockman proposed SSS* algorithm and proved that it is a correct min-
imax algorithm and that it never explores a node that alpha-beta ignore. Moreover, for
practical distributions of tip value assignments SSS* will explore strictly fewer game
tree nodes than Alpha-Beta. However, SSS* algorithm has disadvantages of big storage
requirement and the need to maintain the OPEN table [11, 12].

Paper [13] proposed that by reformulating the algorithm, SSS* can be expressed
simply and intuitively as a series of calls to Alpha-Beta, yielding a new algorithm
called AB-SSS*. AB-SSS* visits the same interior and leaf nodes in the same order as
SSS* and resolves the problems mentioned above with SSS*. AB-SSS* has been
implemented in high-performance game-playing programs for checkers, Othello and
chess. In this paper, we using AB-SSS* as the searching algorithm.

3.2 The Experimental Results

Train the evaluation function optimized by adaptive genetic algorithm that has an
improved fitness function with gradient training experiment. Champions of 50th gen-
eration, 100th generation, 150th generation, 200th generation, 250th generation, 300th
generation formed a group to carry out round robin of successively hand. One is
awarded 3 points for a win, 1 for a draw and O for a lose. Finally, the case is shown in
Fig. 2.

It can be found by the line chart that for the evaluation function optimized by
improved genetic algorithm and gradient training, the more generations to train, the

Training Standings

D
25 — improved GA gradient
w0 training
< 15 Pt ordinary GA gradient
I —— training
10 improved GA non-graded
5 training
0

0 100 150 20 25 30
Training Generation

Fig. 2. Training standings

Adaptive Genetic Algorithm to Optimize the Parameters 423

stronger the chess is and more obvious the effect is. However the differences between
evaluation functions optimized by ordinary genetic algorithm gradient training and
improved genetic algorithm non-graded training respectively is relatively small
between generations. This shows that the improved genetic algorithm has faster con-
vergence rate.

It was found that after the program is iterated to 300 generations, the optimized
parameters are substantially no longer change. The parameter values at this time are
shown in Table 1.

Table 1. Training results.

Parameter | Ay | Az | Aoy [A | Az Az | Ay | Aun | Asy | Asp
Value 53 |7 27 119 |12 |15 |11 |9 5 8

Experiment results show that game algorithm with evaluation function using the
above parameter combination has greater possibilities to win compared with sparring
algorithm.

In order to verify the gradient training method we proposed can reduce the training
time and ensure the accuracy, our experiment take 8 as the search depth of both genetic
algorithm and training algorithm in the training in different stages and using the same
evaluation function. Due to the time cost is too high, we only train 50 generation. The
results are shown in Table 2 and Fig. 3.

Table 2. Trainning time.

Generation | Time consumption (min)

Gradient training | Non-gradient training
10-20 10 50
20-30 23 66
3040 21 80
40-50 25 103

Running time ratio

I gradient-training (20.9%)
W non-gradient-training (79.1%)

Fig. 3. Running time ratio

424 F. Bi et al.

In the Table 2 and the Fig. 3 we find that the time gap of two is obvious. Then we
used the same evaluation function of the same generation of both gradient training and
non-gradient training to play with each other for 50 rounds. Winning statistics are
shown in Table 3.

Table 3. Winning statistics.

Generation | Win (rounds)

Gradient training | Non-gradient training
10-20 27 23
20-30 24 26
3040 25 25
40-50 23 27

In the Table 3 we find that increment of the search depth dose not bring obvious
advantages. It validates our strategy to a certain extent.

4 Conclusion

There are precocious and other defects for classical genetic algorithm. In this paper, we
introduced a new method of calculating the fitness function that considers the objective
function’s trends in search point, and the trend information is added to the fitness
function to guide search. Simultaneously adaptive genetic algorithm enables crossover
probability p. and mutation probability p,, automatically resized according to the
individual’s fitness. These measures have greatly improved the speed of convergence
of the algorithm. The genetic algorithm is introduced to optimize the evaluate function
parameters which avoids manually adjust parameters in the traditional way and ensures
the accuracy and objectivity of the parameters. Experiments show skill in playing
Dots-and-Boxes greatly improved after its evaluation function parameters optimized.
This also provides a new way of thinking for development of high-level game
algorithm.

References

1. Hongkun, Q., Peng, Z., Yajie, W., et al.: Analysis of search algorithm in computer game of
Amazons. In: 26th Chinese Control and Decision Conference, pp. 3947-3950. IEEE Press,
New York (2014)

2. Duan, Z.: An improved evaluation function for Connect6. In: 24th Chinese Control and
Decision Conference, pp. 1685-1690. IEEE Press, New York (2012)

3. Wei, X.-K., Shao, W., Zhang, C., et al.: Improved self-adaptive genetic algorithm with
quantum scheme for electromagnetic optimization. IET Microw. Antennas Propag. 8,
965-972 (2014)

10.

11.

12.

13.

Adaptive Genetic Algorithm to Optimize the Parameters 425

. He, X., Liang, J.: The objective function using genetic algorithms gradient. J. Softw. 12,

981-985 (2001). (in Chinese)

. Luo, B., Zheng, J., Yang, P.: GA-based directional climbing. Comput. Eng. Appl. 44, 92-95

(2008). (in Chinese)

. Qi, J.-Y.: Application of improved simulated annealing algorithm in facility layout design.

In: 29th Chinese Control Conference, pp. 5224-5227. IEEE Press, New York (2010)

. Li, S., Li, D., Yuan, X.: Research and implementation of dots-and-boxes. J. Softw. 7, 256—

262 (2012)

. Deng, X.: Application of adaptive genetic algorithm in inversion analysis of permeability

coefficients. In: Second International Conference on Genetic and Evolutionary Computing,
WGEC 2008, pp. 61-65. IEEE Press, New York (2014)

. Huang, Y.-P., Chang, Y.-T., Sandnes, F.-E.: Using fuzzy adaptive genetic algorithm for

function optimization. In: Annual Meeting of the North American on Fuzzy Information
Processing Society, NAFIPS 2006, pp. 484-489. IEEE Press, New York (2006)

Yanhong, P.: Wind power fitness function calculation based on niche genetic algorithm. In:
International Conference on Sustainable Power Generation and Supply, pp. 1-5. IEEE Press,
New York (2012)

Stockman, G.C.: A minimax algorithm better than alpha-beta? Artif. Intell. 12, 179-196
(1978)

Ibaraki, T.: Generalization of alpha-beta and SSS* search procedures. Artif. Intell. 29,
73-117 (1986)

Plaat, A., Schaeffer, J., Pijls, W., de Bruin, A.: SSS* = alphabet + TT. Technical report
TR-CS_94-17, Department of Computing Science, University of Alberta, Edmonton, AB,
Canada (1994)

	Adaptive Genetic Algorithm to Optimize the Parameters of Evaluation Function of Dots-and-Boxes
	Abstract
	1 Introduction
	2 Solutions of Genetic Algorithm Applied to Optimization of Evaluate Function Parameters
	2.1 Challenges for Genetic Algorithm to Use in Game
	2.2 Parameter Selection and Coding Scheme of the Evaluation Function
	2.3 Calculation of the Fitness Function and Population Selection
	2.4 Crossover and Mutation Operation
	2.5 Adaptive Genetic Algorithm

	3 Experimental Testing and Results
	3.1 Experimental Strategies
	3.2 The Experimental Results

	4 Conclusion
	References

