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Abstract. After many devices that have adopted LTE technology, it is
optimistic to presume that 5G technology will have to address the huge
traffic of data and volume of heterogeneous devices in future. Exist-
ing context-aware Internet of Things (IoT) applications directly control
sensors on LTE devices in an uncoordinated and non-optimized man-
ner, which leads to redundant sensor activations and energy wastage on
resource-constrained IoT devices. Optimal and coordinated sensor usage
dictates a comprehensive middleware solution to bring together the infor-
mation from all IoT applications/sensors and intelligently select the best
set of sensors to activate. In this paper, we design, implement, and eval-
uate a sensor management middleware for LTE devices that controls the
tradeoff between energy consumption of sensors and accuracy of inferred
contexts. The core task of this middleware is to minimize total energy
consumption while making sure that the accuracy requested by IoT appli-
cations are met. Trace-driven simulations are conducted to demonstrate
the merits of the proposed middleware and algorithms. The simulation
results indicate that the proposed algorithms clearly outperform the cur-
rent solution.

Keywords: IoT applications · Sensor management · LTE device ·
Context-aware

1 Introduction

Increasingly more Internet of Things (IoT) applications (apps) on LTE devices
leverage the rich set of sensors to infer their contexts for enhancing user experi-
ences. As we are progressing towards the IoT [8], a number of context aware IoT
applications are being produced to take advantage of sensors available on LTE
devices. In the future, multiple IoT applications running at the same time on an
LTE device may request a multitude of overlapping contexts, e.g., location and
time. For example, location awareness [10] can help to introduce some resource
allocation techniques which will help to reduce delay by predicting channel qual-
ity. A context aware adaptive system [1] is required in the middleware layer to
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address the heterogeneous data being generated from IoT applications. While a
context may be answered by different sets of sensors depending on the requested
accuracy and availability of sensors, uncoordinated and non-optimized use of the
sensors by the multiple apps may turn on redundant sensors, leading to wastage
of energy.

Choosing the best set of sensors to activate in order to satisfy the needs of
various context-aware apps is very challenging. This is because there exists a
tradeoff between context inference accuracy and energy consumption of sensors.
On top of that, context-aware apps impose diverse accuracy requirements and
LTE devices have different remaining battery levels at different time. Therefore,
efficiently determining the set of sensors to activate dictates a comprehensive
mobile middleware solution, which brings together various information from apps
and sensors. In this paper, we propose a sensor management middleware, which
sits between the context-aware apps and sensors. The middleware achieves coor-
dinated and optimized uses of sensors, and provides efficient sensor management
service to the context-aware apps.

The core of the middleware is the sensor management algorithm, which is
repeatedly invoked to adapt to system dynamics. In this paper, the sensor man-
agement algorithm will optimally chose the best set of sensors for various con-
text requests from multiple IoT applications on an LTE device. We develop
two mathematical formulations of the sensor management problems: (i) energy
optimization, which strives to find the set of sensors that consumes the least
energy while satisfying the sensing requirements, and (ii) accuracy optimization,
which strives to maximize the overall accuracy under an energy budget. Since
low latency is one of the most important criteria in 5G technology, we develop
two heuristic, real-time sensor management algorithms for resource-constrained
mobile devices.

The rest of this paper is organized as follows. We survey the literature in
Sect. 2. Section 3 describes the proposed middleware and proposed sensor man-
agement algorithms. Sect. 4 gives the trace-driven simulation results. Section 5
concludes the paper.

2 Related Work

Mobile context sensing has been studied in the literature. However there has not
been much work done for context and sensor management related to 5G IoT
environments. Taranto et al. [10] has proposed methodologies about how loca-
tion aware context can be useful for 5G architecture. They briefly describe how
location awareness can be leveraged across different layers of protocol stack on
5G architecture. Perera et al. [8] have surveyed various context aware comput-
ing methodologies that have been addressed in context aware IoT applications.
They state that a large number of solutions exist in terms of system, middleware
and application; however none of them addresses our core issue. Most existing
studies on context-aware LTE IoT (smartphone) apps [2–4,6,11] consider loca-
tion sensing. For example, Ma et al. [6] propose a system to predict the future
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locations of a mobile user based on his/her previous locations. Their prediction
algorithm employs sensor readings from GSM and WiFi for coarse localization,
which is more energy efficient than using GPS sensors. Different from our pro-
posed OSM middleware, these studies [2–4,6,11] only consider location sensing,
and thus their solutions are inapplicable to our problem. Contexts other than
location have also been recently investigated [5,9,13]. For example, Yan et al. [13]
employ accelerometers to classify the mobile user actions, e.g., stand, walk, and
sit. None of the studies [5,9,13] consider the inter-dependency among inference
algorithms of different contexts: each context is inferred independently.

3 Proposed System

3.1 System Architecture

Our proposed middleware sits between apps and the hardware. Many context-
aware apps run on LTE devices, which may need different contexts at diverse
accuracy and frequency. We collectively call a pair of accuracy and frequency as
request. Apps may register or unregister requests through an Application Pro-
gramming Interface (API) at any time. Each set of sensors is referred to as a
combination in this paper. For example, a context IsDriving may be inferred
by a combination of the GPS and the accelerometer. Moreover, a context may
be inferred by various combinations, which renders the decisions even harder.
For instance, IsDriving may also be inferred using the microphone. As illus-
trated in Fig. 1, the middleware consists of an API and four software compo-
nents: (i) request manager, (ii) resource manager, (iii) context analyzer, and
(iv) system model. The request manager keeps track of all registered requests
and apps with a queue. It also checks if the callback function invocation fails,
and automatically unregisters all the requests from any failed (exited) apps.

Fig. 1. The proposed middleware. Italic font indicates the focused components of our
work.
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The resource manager focuses on resource conservation and consists of two
components: the battery monitor and sensor management algorithm. The sen-
sor management algorithm takes the aggregated requests and system models as
inputs, and generates decisions that activate the combinations of sensors and
specify their sampling rates. The sensor management algorithms can either: (i)
maximize the overall accuracy under a given energy budget or (ii) minimize the
total energy consumption while achieving target accuracy levels which are inputs
from apps or users. The context analyzer analyzes the sensor readings to infer
contexts by hosting various inference algorithms for different combinations and
contexts. The System model contains three parts: (i) context model, (ii) accu-
racy model, and (iii) energy model. The context model stores the relationship
among contexts, inference algorithms, and sensor combinations, e.g., the action
inference algorithm uses the accelerometer and WiFi to classify the user actions,
such as walk, run, and still. The accuracy model captures the accuracy of the
contexts inferred by the inference algorithms. Different metrics, such as preci-
sion and recall can be used to quantify the inference accuracy. The energy model
captures the energy consumption of each sensor at different sampling rates.

We let R be the total number of requested contexts and S be the total number
of sensors. We define a request as <yr, fr>, where r (1 ≤ r ≤ R) is the requested
context, yr is the target accuracy, and fr is the desired frequency. We let C be
the total number of potential sensor combinations. We employ a boolean matrix
M to capture the relation between combinations and sensors1. In particular, we
let mc,s = 1 (1 ≤ c ≤ C, 1 ≤ s ≤ S) if combination c contains sensor s, and
mc,s = 0 otherwise. We collectively call all ac,r as A. Last, we use es to denote
the energy consumption of sensor s, where 1 ≤ s ≤ S, in the next management
window T . We write a decision as <xs, ps>, where xs indicates whether the
sensor s (1 ≤ s ≤ S) should be activated, and ps represents the sampling rate.
Next, we present the two sensor management problems.

Problem 1 (Energy Minimization: EM). Given requested contexts r (1 ≤
r ≤ R) and combinations c (1 ≤ c ≤ C), the EM problem selects a subset of
combinations to achieve the minimum energy consumption while satisfying all the
accuracy requirements yr (1 ≤ r ≤ R). Upon the combination subset is chosen,
the decision is set based on the relation between combinations and sensors (M).
The EM problem is a NP-complete problem.

Problem 2 (Accuracy Maximization: AM). Given requested contexts r
(1 ≤ r ≤ R), combinations c (1 ≤ c ≤ C), and an energy budget E, the AM prob-
lem selects a subset of combinations to maximize the achieved accuracy without
exceeding the energy budget. Upon the combination subset is chosen, the deci-
sion is set based on the relation between combinations and sensors (M). The
AM problem is a NP-complete problem.

1 Throughout this paper, we use bold font to denote vectors or matrices.
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3.2 Efficient Energy Minimization Algorithm (EEMA)

The EEMA algorithm maintains a set R̂, X of unmet requests and the chosen
sensors so far. We define utility of a combination as a fraction of profit and cost.
The profit is the number of unmet requests that can be satisfied by the combi-
nation, and the cost is the additional energy consumption, if the combination is
chosen. The utility gc(A,M,X, R̂) of a combination c (1 ≤ c ≤ C) is written as:

gc(A,M,X, R̂) =
pc(A, R̂)
wc(M,X)

=

∑
1≤r≤R,r∈R̂ 1[ac,r≥yr ]∑

1≤r≤R 1[ac,r≥yr ]
∑

1≤s≤S,s/∈X mc,ses,
(1)

where 1 is the indicator function, A is the accuracy model, and R̂ is the set of
unmet requests and where M is the boolean matrix of relation between combi-
nations and sensors and X keeps track of the chosen sensors so far. We note that
the denominator of Eq. (1), wc(M,X), could be zero because some sensors may
be always on for basic LTE device features. Figure 2 gives the pseudocode of
our EEMA algorithm. The loop in lines 4–5 computes the latest gc(A,M,X, R̂)
using Eq. (1) for all combinations. Line 6 picks the combination c∗ with the
highest utility. Lines 7 and 8 update the current decision and unmet requests. It
is not hard to see that the time complexity of EEMA is O(RC(S+R)). from the
loops starting from lines 3 and 4, respectively. S and R come from computing
wc(M,X) and pc(A, R̂), respectively. Lines 6, 7, and 8 dominate. Hence, the
time complexity is O(RC(S + R)).

Fig. 2. Efficient Energy Minimization Algorithm (EEMA).

3.3 Efficient Accuracy Maximization Algorithm (EAMA)

The EAMA algorithm maintains a set of R̂ of unmet requests, a list of available
combinations W (i.e., those have not been selected), the energy consumption
eX and achieved accuracy ŶX with the current decision X. Its goal is to find
a decision X with the highest average accuracy without exceeding the energy
budget E. The cost function wc(M,X) is the same as the one used in the EEMA
algorithm. The utility function g′

c(A,M,X, Ŷ) is written as:

g′
c(A,M,X, Ŷ) =

∑
1≤r≤R ac,r1[ac,r≥max(yr,ŷr(X))]

∑
1≤s≤S,s/∈X mc,ses,

. (2)
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where 1 is the indicator function, and Ŷ(X) = {ŷr(x)|r = 1, 2, . . . , R} is the
achieved accuracy with decision X. Figure 3 gives the pseudocode of the EAMA
algorithm. The loop in lines 4–5 computes the latest g′

c(A,M,X, Ŷ) using Eq. (2)
for all combinations. Line 6 picks the combination c∗ with the highest utility,
and line 7 updates the available combinations. The if-clause between lines 8–13
checks if activating the sensors of combination c∗ would lead to energy con-
sumption within the energy budget. If yes, lines 9, 10 and the loop starting from
line 11 update decision X, total energy consumption eX, and the achieved accu-
racy Ŷ, respectively. It can be derived that the time complexity of EAMA is
O(C2(S + R)).

Fig. 3. Efficient Accuracy Maximization Algorithm (EAMA).

4 Trace Driven Simulations

4.1 Setup

We have developed a Java-based event-driven simulator to evaluate the pro-
posed middleware for IoT context aware applications on LTE devices. We have
also implemented the proposed sensor management algorithms: the EEMA and
EAMA for efficient management. For comparisons, we have also implemented
an algorithm called Per-app-Optimized (Per-app) algorithm, which emulates the
state-of-the-art sensor management in LTE devices. The Per-app algorithm goes
through all the requests, and for each request, it selects the combination achiev-
ing the highest precision. This is the same as having individual apps decide how
to use sensors without considering overlapping sensors. Each app requests for a
context randomly selected from the 6 contexts listed in Table 1. The same table
also gives the precision reported in the literature [7,11–13]. We conduct the sim-
ulations on a PC with an Intel 3.4 GHz CPU. We consider both the EM and
AM problems. For the EM problem, we let yr be the accuracy requirement of
individual requests. More specifically, each request is associated with a random
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precision uniformly distributed in yr with value ranging between 0.3 and 0.9.
An IoT app may make several context requests to the middleware. For the AM
problem, we consider the energy budget E = {500, 700, 900, 1100, 1300} mJ, with
a sampling rate of 1/300 Hz. E is the energy limit in each management window.
We report sample results from E = 1000 mJ, if not otherwise specified. We use
T = 1 min as management window size. The mapping between combinations and
sensors are chosen randomly by Bernoulli trail which basically decides whether a
sensor should be activated or deactivated. We adopt three performance metrics:
(i) energy consumption in mJ, (ii) mean precision in %, and (iii) success rate in
%. The success rate refers to the ratio of satisfied context requests.

Table 1. The combinations, contexts, and sensors used in our simulations

Context precision (%) Sensor activation in Boolean

Combination IsSitting IsStanding IsWalking IsRunning InMeeting IsDrivingAcc. Blue.WiFiMic.GPSCell.

YAN [13] 95 91 83.8 0 73.86 74 1 0 1 0 1 0

CenceMe [7] 68 78 94 74 68 74 1 1 0 1 1 0

EEMSS [11] 89.44 0 78.2 90 0 63.86 1 1 1 0 1 0

EEMSS2 [11] 99.44 0 88.2 100 0 73.86 1 1 1 1 1 0

SAMMPLE [12] 0 0 0 0 68 0 1 0 0 0 1 0

SAMMPLE2 [12] 0 0 0 0 57 0 1 0 0 0 0 0

OTHER1 50 59 66 70 96 91 0 0 1 0 0 1

OTHER2 35 54 56 60 86 76 1 0 0 0 0 1

4.2 Results

We first validate the correctness of Per-app, EMA, and EEMA algorithms. We
find that all requests from apps are satisfied by the resulting decisions. Figure 4
shows sensor activations with EAMA algorithm when the energy budget is set
to 1000 mJ. The accelerometer is the least activated sensor, whereas GPS and
BlueTooth are requested more frequently from various IoT applications. Next,
we report the energy consumption achieved by individual algorithms in Fig. 5(a).
We observe that EEMA consumes the least energy when we have a fixed energy
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Fig. 4. Sensor activation by EEMA for E = 1000 mJ.
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Fig. 5. Energy consumption with: (a) sample results from E = 1000 mJ and (b) aggre-
gated results under diverse E.

Time (min)
0 10 20 30 40 50

Pr
ec

is
io

n 
(%

)

0

20

40

60

80

100 EEMA
EAMA
Per-app

(a)

Energy Budget (mJ)
500 700 900 1,100 1,300

A
ve

ra
ge

 P
re

ci
si

on
 (

%
)

0

20

40

60

80

100

EEMA
EAMA
Per-app

(b)

Fig. 6. Average precision with: (a) sample results from E = 1000 mJ and (b) aggre-
gated results under diverse E.

budget of (E = 1000 mJ) and outperforms the per-app algorithm. We then
plot the aggregated results under different energy values E in Fig. 5(b). We
see a significant saving in energy consumption in EEMA compared to per-app
algorithm. The energy consumption of EAMA and per-app is non-decreasing as
the energy budget increases, however EEMA shows better result than both of
them. We justify the accuracy maximization problem by showing the precision
and success rate by focusing on EAMA algorithm. In Fig. 6, we clearly see that
the precision of EAMA is better compared to per-app and EEMA. Compared
to the sample results in Fig. 6(a), the same observation is even more clear in the
aggregated results in Fig. 6(b) with varying energy budgets. High success rate
suggests the correctness of our accuracy model by stating the ratio of correctly
inferred contexts out of all the requested contexts. In Fig. 7, we see that the
success rate is higher for EAMA algorithms which suggests that we achieve
higher overall accuracy under a specific energy budget.
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Fig. 7. Success rate with: (a) sample results from E = 1000 mJ and (b) aggregated
results under diverse E.

5 Conclusion

Context-aware IoT applications are getting increasingly more popular. Multiple
IoT apps may run at the same time on an LTE device and request for several
overlapping contexts at a subsequent higher rate. In this paper, we developed a
novel middleware solution to support efficient context inference from IoT applica-
tions in terms of energy consumption and accuracy. Instead of solely intending
to reach optimal energy consumption for independent contexts, the proposed
middleware selectively activates certain sensors while taking overlapping con-
text requirements from multiple context-aware applications into consideration.
We also rigorously studied the sensor management problem, which is the core
issue in this middleware. We presented two optimization problem formulations:
energy- and accuracy-optimization. We then proposed two heuristic algorithms
to address these problems: EEMA and EAMA. Our extensive trace-driven sim-
ulations show the merits of our proposed middleware solution and algorithms.
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