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Abstract. Uncertainty is one of the most critical aspects that affect the quality
of Big Data management and mining methods. Clustering uncertain data has
traditionally focused on data coming from location- based services, sensor
networks, or error-prone laboratory experiments. In this work we study for the
first time the impact of clustering uncertain data on a novel context consisting in
visiting styles in an art exhibition. We consider a dataset derived from the
interaction of visitors of a museum with a complex Internet of Things
(IoT) framework. We model this data as a set of uncertain objects, and cluster
them by employing the well-established UK-medoids algorithm. Results show
that clustering accuracy is positively impacted when data uncertainty is taken
into account.

Keywords: Uncertain objects � Clustering � Data mining � Cultural heritage
data

1 Introduction

In the last decade, “Veracity” has been named the fourth “V” referred to the Big Data
paradigm in addition to Volume, Velocity and Variety. This attribute emphasizes the
importance addressing managing of uncertainty inherent within several types of data. It
refers to the level of reliability associated with certain types of data. In this scenario,
handling uncertainty in data management requires more and more importance if we
consider the wide range of Big Data applications. Some data can be considered
inherently uncertain, for example: sentiment in humans; GPS sensors bouncing among
the skyscrapers of New York; weather conditions; and clearly the future. The term
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uncertainty describes anubiquitous status of the information as being produced,
transmitted, and acquired in real-world data sources. Exemplary scenarios are related to
the use of location-based services for tracking moving objects and sensor networks,
which normally produce data whose representation (attributes) is imprecise at a certain
degree. Imprecision arises from the presence of noisy factors in the device or trans-
mission medium, but also from a high variability in the measurements (e.g., locations
of a moving object) that obviously prevents an exact representation at a given time.
This is the case virtually for any field in scientific computing, and consequently for a
plethora of application fields, including: pattern recognition (e.g., image processing),
bioinformatics (e.g., gene expression microarray), computational fluid dynamics and
geophysics (e.g., weather forecasting), financial planning (e.g., stock market analysis),
GIS applications to distributed network analysis [1].

For data management purposes, uncertainty has been traditionally treated at the
attribute level, as this is particularly appealing for inductive learning tasks [22]. In
general, attribute-level uncertainty is handled based on a probabilistic representation
approach that exploits probability distributions describing the likelihood that any given
data tuple appears at each position in a multidimensional domain region; the term
uncertain objects is commonly used to refer to such data tuples described in terms of
probability distributions defined over multidimensional domain regions.

Clustering of uncertain objects has traditionally been employed to categorize data
coming from location-based services, sensor networks, or error-prone laboratory
experiments. In this work we focus for the first time on studying how handling data
uncertainty impacts the performance of clustering methods in a novel context of vis-
iting styles in art exhibition. We consider a dataset derived from the analysis of how
visitors of a museum interact with mobile devices such as smartphones or tablets. We
model this data as a set of uncertain objects, and apply the UK-medoids algorithm [19]
to obtain clusters of similar visiting styles. We compare such a visiting-style grouping
with a ground truth obtained by a well-established classification methodology, which
classifies visiting styles into four categories (ant, butterfly, fish, grasshopper) based on
the values of some exemplar parameters, such as the percentage of viewed artworks or
the average time spent in interacting with artworks [5, 8–10]. F-measure results confirm
the claim that clustering accuracy increases when data uncertainty is taken into account
in the process.

The rest of the paper is organized as follows: Sect. 2 describes some preliminaries
on clustering techniques of uncertain data and Sect. 3 presents the case study. More-
over in Sect. 4 we report some experiments on accuracy and efficiency of K-medoids
algorithm applied to our case study. Finally conclusions close the paper.

2 Preliminaries on Clustering of Uncertain Data

Data clustering is a central problem in pattern recognition, knowledge discovery, and
data management disciplines. Given a set of objects represented in a multidimensional
space, the objective is to infer an organization for these objects into groups, also called
clusters, according to some notion of affinity or proximity among the objects. Two
general desiderata for any clustering algorithm is that each of the discovered clusters
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should be cohesive (i.e., comprised of objects that are very similar to each other) and
that the clusters are well-separated from each other. A major family of clustering
algorithms is referred to as partitional clustering [2, 7, 17], whose general scheme is to
produce a partitioning of the input set of objects by iteratively refining the assignment
of objects to clusters based on the optimization of some criterion function. This
approach can be computationally efficient when a proper notion of cluster prototype is
defined and used to drive the assignment of objects to clusters. Typically, a cluster
prototype is defined as the mean object in the cluster (centroid), or an object that is
closest to each of the other objects in the cluster (medoid). K-means [20] and
K-medoids [19] are two classic algorithms that exploit the notions of centroid and
medoid, respectively.

In this paper we exploit a clustering approach originally designed in the research of
uncertain data mining. To this purpose, we can refer to a relatively large corpus of
studies developed in the last decade [3, 13–16, 18, 25]. In this work we focus on the
uncertain counterpart of K-medoids, named UK-medoids, which was proposed in [13].
This algorithm overcomes two main issues of the uncertain K-means (UK-means) [3]:
(i) the centroids are regarded as deterministic objects obtained by averaging the
expected values of the pdfs of the uncertain objects assigned to a cluster, which may
result in loss of information; (ii) the adopted Expected Distance between centroids and
uncertain objects requires numerical integral estimations, which are computationally
inefficient.

Given a dataset D of uncertain objects and a number k of desired output clusters,
the UK-medoids algorithm starts by selecting a set of k initial medoids (uniformly at
random or, alternatively, by any ad-hoc strategy for obtaining wellseparated medoids).
Then, it iterates through two main steps. In step 1, every object is assigned to the cluster
corresponding to the medoid closest to the object. In step 2, all cluster medoids are
updated to reflect the object assignments of each cluster. The algorithm terminates
when cluster stability is reached (i.e., no relocation of objects has occurred with respect
to the previous iteration).

One of the strength point of UK-medoids is that it employs a particularly accurate
distance function designed for uncertain objects, which hence overcomes the limitation
in accuracy due to a comparison of the expected values of the object pdfs. Also, the
uncertain distance for every pair of objects are computed once in the initial stage of the
algorithm, and subsequently used at each iteration. The combination of the above two
aspects has shown that UK-medoids outperforms UK-means in terms of both effec-
tiveness and efficiency.

3 A Case Study: Styles of Visit in an Art Show

As case study has been considered the art show “The Beauty and the Truth”1. Here,
Neapolitan works of art dating from the late XIX and early XX centuries have been
shown. The sculptures have been exposed in the monumental complex of San

1 http://www.ilbellooilvero.it
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Domenico Maggiore, located in the historical centre of Naples. During the event, we
have collected log files related to 253 visitors thanks to an Internet of Things deployed
framework [4, 6]. The analysis of their behaviours within the cultural space has enabled
us to define a classification of the visiting styles. In the literature, there exist several
research papers that focus on this objective.

As a starting point for our classification we have considered the work in [23], where
authors have proposed a classification method based on a comparison between beha-
viours of museum visitors and four “typical” animals (i.e., ant, fish, butterfly and
grasshopper). Moreover, we have resorted to the work presented in [24], where,
recalling the above mentioned approach, authors have introduced a methodology based
on two unsupervised learning approaches for validating empirically their model of
visiting styles. Finally, in [5, 8–10], we have proposed a classification technique able to
discover how visitors interact with a complex Internet of Thinghs (IoT) framework,
redefining the visiting styles’ definition. We have considered the behaviours of spec-
tators in connection with the use of the available supporting technology, i.e.,
smart-phones, tablets and other devices. For completeness, we report a brief description
below.

A visitor is considered:

– an ant (A), if it tends to follow a specific path in the exhibit and intensively enjoys
the furnished technology;

– a butterfly (B), if it does not follow a specific path but rather is guided by the
physical orientation of the exhibits and stops frequently to look for more media
contents;

– a fish (F), if it moves around in the center of the room and usually avoids looking at
media content details;

– a grasshopper (G), if it seems to have a specific preference for some preselected
artworks and spends a lot of time observing the related media contents.

The four visiting styles are characterized by three different parameters, assuming
values in [0, 1]: ai, si and vi. More in detail, for the i-th visitor, we denote by:

– ai, the percentage of viewed artworks;
– si, the average time spent by interacting with the viewed artworks;
– vi, that measures the quality of the visit, in terms of the sequence of crossed sections

(i.e., path).

The classification of the visiting styles is obtained following the scheme summa-
rized in Table 1.

Table 1. Characterization of the visiting styles.

Visiting style ai si vi

A � 0.1 Negligible � 0.58
B � 0.1 Negligible <0.58
F <0.1 <0.5 Negligible
G <0.1 � 0.5 Negligible
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As we can observe, values ai � 0.1 characterize both As and Bs, while values ai <
0.1 are related to Fs and Gs. Moreover, the parameter si does not influence the clas-
sification of As and Bs, while values si < 0.5 are typical for Fs and values si � 0.5 are
inherent in Gs. Finally, the parameter v does not influence the classification of Fs and
Gs, whereas values v � 0.58 are related to As and values v < 0.58 characterize Bs. We
recall that, each parameter is associated with a numerical value normalized between 0
and 1. The thresholds values a ¼ 0:1; s ¼ 0:5 and v ¼ 0:58 have been obtained after a
tuning step, in which we have resorted to the K-means clustering algorithm to discover
data groups reflecting visitors’ behaviours in all the sections of the exhibit. More
details, about how these values have been set, are reported in [11].

4 Experimental Evaluation

We devised an experimental evaluation aimed to assess the ability in clustering
uncertain objects of the algorithm proposed in [13] and discussed in Sect. 2. We
consider the dataset derived from the analysis of how visitors of a museum interact with
an IoT framework, according to the methodology described in Sect. 3. We model this
data as a set of uncertain objects, and apply the UKmedoids algorithm [19] to obtain
clusters of similar visiting styles. The ultimate goal of our evaluation is to compare
such a visiting-style grouping with a ground truth obtained by a well-established
classification methodology defined [5, 8–10] (described in Sect. 3), and show that our
method outperforms a baseline clustering method that does not take uncertainty into
consideration.

4.1 Evaluation Methodology

Dataset. Experiments were executed by exploiting the dataset populated with data
coming from the above mentioned log files. In the following, we report a description of
the dataset resorting, for simplicity of representation, to the ARFF Weka format (see
Fig. 1 for more details). Notice that, the dataset is characterized by: (i) 253 objects (i.e.,
the visitors); (ii) 3 attributes (i.e., a, s, and v), which reflect, for each visitor, the
parameters ai, si and vi, described in Sect. 3; (iii) 4 classes (i.e, A;B;F and G), cor-
responding to the already cited typical animals. Moreover, observe that tuples contain
the symbol “?” for some attribute values that are not significant for the classification. In
other words, accordingly with the classification rules summarized in Table 1, for As
and Bs we neglect attribute tau and for Fs and Gs we neglect attribute v.

The selected dataset is originally composed by deterministic values. For this reason, we
needed to synthetically generate the uncertainty. Notice that, in order to adapt the
dataset to the algorithm in [13], the neglected values have been substituted with the
numerical approximation 0.0. In substance, this can be assimilated to a first kind of
perturbation.
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For the univariate case, we needed to define the region for the interval of uncer-
tainty I(h) and the related pdf f (h) for the region I(h), for all the a(h), h 2[1..m] attributes
of the o object. We randomly chose the interval region I(h) as in the subinterval [minoh,
maxoh ], and these two boundaries are the minimum (i.e., minoh) and the maximum (i.e.,
maxoh)) deterministic values for h (i.e., the attribute) taking into account the objects that
are part of the same ideal classification for o. Regarding f (h), a continuous formulation
of the density function has been taken into account, that is Uniform, together with a
discrete mass function, that is Binomial. We properly set the parameters for the
Binomial distribution in order to have the mode in correspondence of the original
deterministic value of the attribute h-th of the o object.

Clustering Validity Criteria. In order to evaluate quality the clustering in output, we
resorted to the availability of the classification originally provided in the dataset.
Indeed, following the natural cluster paradigm, the higher the clustering solution is
similar to the reference classification, the higher is the quality achieved. F-measure [21]
is a well known external criterion used to evaluate clustering solution, which exploits
Recall and Precision notions from the Information Retrieval field.

Overall Recall (R) and Precision (P) can be computed by means of a macroaver-
aging strategy performed on local values as:

R ¼ 1
H

XH

i¼1

max
j2½1::K�

Ri;j; P ¼ 1
H

XH

i¼1

max
j2½1::K�

Pi;j;

Overall F-measure is defined as the harmonic mean of P and R as:

F ¼ 2PR
PþR

Fig. 1. The dataset in the ARFF Weka format
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Settings. The calculation of the distances involves integral computation, and we do it
by exploiting the sample list coming from the pdfs. We resorted to a sampling method
based on the classical Monte Carlo.2 A tuning phase has been preliminary done in
order to set in the proper way the sample number S; the strategy was based on a choice
of S producing an accuracy level that another S0 [ S was not able to improve
significantly.

4.2 Results

Accuracy. Accuracy tests have the objective evaluate the impact of dealing with
uncertainty in a clustering-based analysis. For this reason, we are interesting in com-
paring clustering results achieved by our UK-medoids algorithm on the dataset with
uncertainty w.r.t. the ones achieved by K-medoids algorithm on the dataset with
deterministic values.

In Table 2 we report only results on the univariate model (multivariate model carried
out similar results). More in detail, here we highlight the differences, in terms of
F-measure percentage gains, between UK-medoids (both binomial and uniform) and
deterministic K-medoids. It can be observed that UK-medoids achieves higher accu-
racy results w.r.t. K-medoids, that are slight for binomial distribution (0.043%), but
relevant for uniform one (6.227%). In general, we can notice that introducing uncer-
tainty in the dataset and handling it in the clustering task with our proper UK-medoids
algorithm leads to improve the effectiveness of the results.

Efficiency. To evaluate the efficiency of UK-medoids, we measured time perfor-
mances in clustering uncertain objects.3 Figure 2 shows the total execution times (in
milliseconds) obtained by UK-medoids on our dataset. Notice that, we calculated the
sum of the times obtained for the pre-computing phase (i.e., uncertain distances
computation), together with the algorithm runtimes. Here, it can be noted that by using
a uniform pdf we obtain execution times about 2 times faster than those achieved with a
binomial pdf. This is due to the fact that a binomial pdf requires to process a higher
number of samples w.r.t. a uniform pdf.

Table 2. UK-medoids’ performance results compared with deterministic K-medoids in terms of
F-measure percentage.

pdf UK-medoids gain

Binomial 0.04298805%
Uniform 6.22712192%

2 We used the SSJ library, available at http://www.iro.umontreal.ca/� simardr/ssj/
3 Experiments were conducted on an ENEA server of CRESCO4 HPC cluster hosted in Portici [12] –
http://www.cresco.enea.it/
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5 Conclusion

In this paper we addressed the topic of how data collected by an IoT system through
mobile devices in a cultural environment could be opportunely exploited and analysed.
The main goal is to infer useful knowledge about visitors. Real data are generally
affected of a large degree of uncertainness and to deal with this drawback, here we
propose a clustering approach based on K-medoids algorithms. Nevertheless the lim-
itation of a not very large dataset, first results encourage us to deeply investigate this
approach, in order to better analyse data collected from a real cultural heritage scenario.
Moreover, with the aim to improve the performance of the proposed method, in future
works we will intend to better adapt the uncertain interval and the pdf, defined on this
set, to our problem.
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