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Abstract. The abstract should summarize the contents of the paper and should
Distributed Compressive Sensing (DCS) improves the signal recovery perfor-
mance of multi signal ensembles by exploiting both intra- and inter-signal
correlation and sparsity structure. In this paper, we propose a novel algorithm,
which improves detection performance even without a priori-knowledge on the
correlation structure for arbitrarily correlated sparse signal. Numerical results
verify that the propose algorithm reduces the required number of measurements
for correlated sparse signal detection compared to the existing DCS algorithm.

Keywords: Compressive sensing � Distributed source coding � Sparsity �
Random projection � Sensor networks

1 Introduction

Baron et al. [1] introduced Distributed Compressive Sensing (DCS), which exploits not
just intra-, but also inter- correlation of signals to improve detection performance. In
[1], they assumed Wireless Sensor Network (WSN) consisting of arbitrary number of
sensors and one sink node, where each sensor carries out compression without coop-
eration of the other sensors and transmits the compressed signal to the sink node. At the
sink node, it jointly reconstructs the original signals from the received signals. Here, a
key of DCS is a concept of joint sparsity, defined as the sparsity of the entire signal
ensemble. Three models have been considered as a joint sparse signal model in [1]. In
the first model, each signal is individually sparse, and also there are common
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components shared by every signal vector, called common information. In the second
model, all signals share supports, which means the locations of the nonzero coefficient.
In the third model, although no signal is sparse itself, they share the large amount of
common information, which makes it possible to compress and recover the signals
using CS. The third model can be considered as a modified version of the first model.
The second joint sparsity model (JSM-2) has been actively explored in many existing
literatures [2–7]. A joint orthogonal matching pursuit (JOMP) for DCS was proposed to
improve the target detection performance of MIMO radar [4]. A precognition matching
pursuit (PMP) which used the knowledge of common support from Fr´echet mean was
proposed to reduce the number of required measurements in WSNs [5]. DCS was
shown to be feasible for a realistic wireless sensor WSNs by implementing on real
commercial off-the-shelf (COTS) hardware with providing good trade-off between
performance and energy consumption [6]. Exploiting common information across the
multiple EGS signals, simultaneous orthogonal matching pursuit (SOMP) for DCS
with learned dictionary was shown to provide accurate reconstruction with the reduced
number of measurements [7]. However, to the best of authors’ knowledge, the first
model (JSM-1) has been studied relatively little. In addition, a limited ensemble of
signals that have single common information is considered in most cases.

In this paper, we propose a generalized (GDCS). While the key idea of DCS [1] is
that we can exploit common information during joint reconstruction process to achieve
performance improvement, the key of the GDCS framework is that we can exploit not
only conventional common information, but also partial common information newly
defined in this paper. The proposed GDCS algorithm, therefore, can provide better
performance than the DCS algorithm in [1] in a generalized, and practical signal
environment.

The remainder of this paper is organized as follows. We summarize the background
of CS briefly in Sect. 2. A novel detection algorithm is proposed to capitalize on the
GDCS in a practical environment in Sect. 3. In Sect. 4, numerical simulations are
provided. Conclusions are made in Sect. 5.

Before going further, some terminologies are clarified as follows.

• Full common information: the set of signal components that are measured by every
sensor in a system.

• Partial common information: the set of signal components that are measured by a
set of sensor set P, where its cardinality is 1\jPj\J. J is the number of sensors in
a system.

• Innovation information: the set of signal components that are measured by a single
sensor.

• DCS algorithm: Algorithm presented in [1] to exploit signal structure in the pres-
ence of full common information.

2 Compressive Sensing

In many cases, we can represent a real value signal x 2 RN as sparse coefficients with a
particular basis W ¼ ½w1; . . .;wN �. We can write
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x ¼
XN
n¼1

wn-ðnÞ ð1Þ

where -ðnÞ is the n th component of sparse coefficients -. Let assume -k k0¼ K,
where -k k0 is the number of nonzero elements in vector -. In a matrix multiplication
form, it can be represented as

x ¼ W- ð2Þ

Including the widely used Fourier and wavelet basis, various expansions, e.g.,
Gabor bases [8] and bases obtained by Principal Component Analysis (PCA) [9], can
be used as a sparse basis. For convenience, we use the identity matrix I for a sparse
basis WZR. Without loss of generality, an arbitrary sparse basis can be easily
incorporated.

Candes, Romberg, and Tao [10] showed that a reduced set of linear projections can
contain enough information to recover a sparse signal, naming this framework as
Compressive Sensing (CS). In CS, a compression is simply projecting a signal onto
measurement matrix U 2 RM�N where M\\N as follows.

y ¼ Ux where y 2 RM ð3Þ

This system is ill-posed, however, it can be reconstructed if the restricted isometry
property (RIP) of U [10] is satisfied with an appropriate constant. According to [10],
the original signal xRZR can be reconstructed by

-e ¼ argmin -k k0 s:t: y ¼ UW- ð4Þ

However, because of NP-hardness of l0 minimization, we use l1 minimization,
paying more measurements [10] as a cost of a tractable algorithm.

-e ¼ argmin -k k1 s:t: y ¼ UW- ð5Þ

This approach is called Basis Pursuit. Contrary to l0 minimization, we can solve l1
minimization with bearable complexities, which is polynomial in N. In addition to
Basis Pursuit, an iterative greedy algorithm can be used for finding the original signal.
Orthogonal Matching Pursuit (OMP) [11] is the most typical algorithm.

3 Iterative Signal Detection with Sequential Correlation
Search

In this section, we discuss a method that can exploit signal structure without any a
priori-knowledge to improve the performance of signal recovery. This is a main
obstacle of exploiting partial common information in practical implementation. To
compare the requirement of a priori-knowledge of the DCS and the proposed GDCS,
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the problem formulation of the DCS model [1] is described adopting the same
notations.

X ¼ ½xT1 xT2 . . . xTJ �T 2 RNJ ð6Þ

Z :¼ ½zTC zT1 . . . zTJ �T 2 RNðJþ 1Þ ð7Þ

xj ¼ zC þ zj where j 2 K ð8Þ

�U :¼
U1 U1 0 :
U2 0 U2 :
: : : :
UJ 0 0 :

0
0
:
UJ

2
664

3
775 2 RJM�ðJþ 1ÞN ð9Þ

Y ¼ �UZ ð10Þ

Ze ¼ argmin WCz0Ck k1 þ W1z01k k1 þ . . .þ WJz0Jk k1 s:t: Y ¼ �UZ0 ð11Þ

whereWC andWj, j 2 K are weight matrices, which could be obtained by [12]. Thanks
to a joint recovery, improved recovery performance can be obtained compared to
disjoint recovery.

Similarly, we can consider a case of the proposed GDCS model, in which a single
partial common information is measured by a set of sensors Knf1; 2; 3g. This case can
be formulated as the following problem by using the proposed GDCS model.

X ¼ ½xT1 xT2 . . . xTJ �T 2 RNJ ð12Þ

Z :¼ ½zTC zT1 . . . zTJ �T 2 RNðJþ 1Þ; where P ¼ Knf1; 2; 3g ð13Þ

xj ¼ zij ; if j 62 P
zCP þ zij ; else

�
ð14Þ

�U ¼

0 U1 0 0 0 : 0
0 0 U2 0 0 : 0
0 0 0 U3 0 : 0
U4 0 0 0 U4 : 0
: : : : : : 0
UJ 0 0 0 0 0 UJ

2
6666664

3
7777775
2 RJM� Jþ 1ð ÞN ð15Þ

Y ¼ �UZ ð16Þ

Ze ¼ argmin WCPz
0
CPk k1 þ Wi1z

0
i1k k1 þ . . .þ WiJ z

0
iJk k1 s:t: Y ¼ �UZ0 ð17Þ

where WCP and Wij , j 2 K are weight matrices, which could be obtained by [12]. As
shown above, to exploit partial common information, we have to find the sensor set for
partial common information P, in this case Knf1; 2; 3g. Unfortunately, it is not
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straightforward to find this set. Since each sensor compresses an acquired signal
without cooperation of other sensors, there is nothing we can do to determine the
correlation structure in a compression process. In a recovery process, although we can
find the correlation structure by an exhaustive search, it demands approximately 2J

number of searches, which is not practical. We, therefore, need a moderately complex
algorithm that finds the correlation structure.

In this notion, a novel algorithm is proposed for finding a correlation structure,
which means a sensor set measuring partial common information. The algorithm
iteratively selects the least correlated signal so that we can approximate the sensor set
for partial common information P. For simplicity, we assume a joint sparse signal
ensemble X with partial common information zCP , where P ¼ Knf1; 2; 3g as in (13).
However, since we have no knowledge on the correlation structure, we cannot for-
mulate the measurement matrix as in (15). Instead of that, we refine the correlation
structure. Let’s assume that the given signal ensemble X has partial common infor-
mation, and the correlation structure is not known. We first consider that the given
signal ensemble X has full common information only. Then, the recovery algorithm
forcefully makes full common information, while this artificially made full common
information is compensated in the innovation information part. For this reason, sensors
that do not have partial common information would have more innovation information
than the sensors that have partial common information. By using this intuition, we
compare l1 norm of the recovered innovation information part, and remove the sensor
whose l1 norm is maximum from the correlation structure. Repeating this, we can
obtain the exact correlation structure.

Although this phenomenon is difficult to understand at the first glance, it is quite
straightforward. We should note that the forcefully found full common information
may have some relation with the real partial common information. Actually, the
forcefully found full common information is likely to be similar to the partial common
information to minimize l1 norm of the solution vector. Then, if the sensor j is one of
the sensors that measure the partial common information, a joint recovery process
successfully divides the energy of the signal into a joint recovery part (the first column
of �U in (9)) and a disjoint recovery part (the rest of the columns of �U in (9)). However,
if the sensor j, is one of the sensors that do not have the partial common information,
the innovation information of the existing DCS for the sensor j 62 P must be made to
compensate the forcefully found full common information, causing increase in l1 norm
of the innovation information part.

Thus, it can be exploited only if forcefully found full common information is made
to be similar to partial common information. If only a small number of sensors can
measure partial common information, i.e., jPj is small, the forcefully found full
common information is likely to be different from the partial common information. In
this case, we cannot expect to find the sensor set P based on the above observation.
Therefore, in this paper, we assume that any partial common information can be
measured by a sufficient number of sensors. This assumption can be justified by the fact
that significant performance gain of the proposed GDCS framework can be achieved
when a sufficient number of sensors measure partial common information.
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Exploiting the above intuition, an iterative signal detection with a sequential cor-
relation search algorithm which we call “GDCS algorithm” throughout this paper is
proposed. It is assumed for simplicity that the number of measurements at each sensor
is M. The concatenated received signal is denoted by Y 2 RMJ . The GDCS algorithm
consists of two phases, inner and outer phases respectively. In the inner phase, cor-
relation structure is identified for a given common information by excluding a sensor
index one by one from the candidate sensor set. In the outer phase, it determines
whether it is going to stop searching a new common information or continue. The
details of the proposed algorithm will be elaborated in the paper in preparation for
journal publication.

4 Simulation Results

In this section, we demonstrate the GDCS through numerical experiments. Assuming
various inter-signal correlations, we compare the detection performance of GDCS
algorithm with Oracle-GDCS, which means GDCS with a priori-knowledge of corre-
lation structure the DCS algorithm, and disjoint recovery.

The simulation environment is as follows. Each signal element is generated by an i.
i.d. standard Gaussian distribution, and the supports are chosen randomly. The signal
size N and the number of sensors J are fixed to 50 and 9, respectively. As afore-
mentioned, the identity matrix is used as a sparse basis without loss of generality.

The measurement matrix is composed of i.i.d. Gaussian entries with a variance
1=M. We assume a noiseless condition in all simulations. The types of common
information and the sparsity of the information are determined as simulation parame-
ters, and the corresponding sensors involved in the correlation are chosen randomly.

We use MATLAB as a simulation tool, and YALL1 solver is used for solving the
weighted l1 minimization. We use an iterative weighted l1 minimization method
introduced in [12] to obtain adequate weight matrices within a reasonable time. The
probability of estimation error within the resolution is used as a performance measure
where error is calculated by X� Xek k2= Xk k2 and the resolution is set to 0.1.

In Fig. 1(a) and (b), GDCS algorithm outperforms the DCS algorithm when there
exists single partial common information while performing as well as oracle-GDCS. It
reduces the required number of measurements by 23% and 18%. It is also noted that
different performance is due to difference in sparsity of partial common information.
We compare the consumed CPU time for GDSS with SCS and the DCS algorithm
when the individual number of measurements are 25, 30, and 35. We average the CPU
time over 100 different realizations with the simulation setting associated with Fig. 1(a)
and (b). The CPU time is measured in seconds. In the (a) environment, the CPU time of
the DCS algorithm are 1.42, 1.33, 1.32, respectively, while those of GDCS with SCS
are 4.07, 3.92, 3.89, respectively. In the (b) environment, the CPU time of the DCS
algorithm are 1.10, 1.08, 1.12, respectively, while those of the GDCS algorithm are
3.52, 3.30, 3.36, respectively. We can observe that the GDCS improves the perfor-
mance with marginal increase in CPU time.
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(a)

.
(b)

Fig. 1. Performance comparison of Oracle GDCS, GDCS algorithm, DCS algorithm and
disjoint recovery when (a) Kij ¼ 4; KCP ¼ 6; jPj ¼ 6, (b) Kij ¼ 4; KCP ¼ 4; jPj ¼ 6
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5 Conclusions

In this paper, we proposed a new framework, a generalized version of the conventional
one [1] so that it can be applicable to a more realistic environment. The proposed
GDCS model refines the existing model so that it can exploit signal structure associated
with partial common information in the joint recovery process. In this notion, we
proposed GDCS algorithm to exploit this information in joint signal recovery without a
priori-knowledge. Numerical simulation verifies that the proposed algorithm can
reduce the required number of measurements compared to the DCS algorithm.
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