
On Exploiting Static and Dynamic Features
in Malware Classification

Jiwon Hong, Sanghyun Park, and Sang-Wook Kim(B)

Hanyang University, Seoul, Republic of Korea
{nowiz,singhyun,wook}@hanyang.ac.kr

Abstract. The number of malwares is exponentially growing these days.
Malwares have similar signatures if they are developed by the same group
of attackers or with similar purposes. This characteristic helps identify
malwares from ordinary programs. In this paper, we address a new type
of classification that identifies the group of attackers who are likely to
develop a given malware. We identify various features obtained through
static and dynamic analyses on malwares and exploit them in classifi-
cation. We evaluate our approach through a series of experiments with
a real-world dataset labeled by a group of domain experts. The results
show our approach is effective and provides reasonable accuracy in mal-
ware classification.

Keywords: Malware classification · Static analysis · Dynamic analysis ·
Feature extraction

1 Introduction

Malwares are continuously causing social and economic damages. Despite the
combined effort of various companies in different countries such as Microsoft,
Kaspersky, Ahnlab, and Avast, the number of malwares is growing more than
ever in recent years.

There are two primary reasons for the fast growth of malwares: there are a
large number of attackers who are developing new malwares continuously; due to
a variety of tools, it is relatively easy to develop a malware. For years, a number
of attackers are releasing new malwares while successfully evading laws. They
often share their source codes, which could also be accidentally leaked out to
the public. This enables other novice attackers to build new malwares without
difficulty. A number of malwares with a similar method of attacking could come
out in a short period of time. Moreover, new malwares may take advantage of
polymorphism or metamorphism for evading detection [1–3].

Despite such efforts of attackers, it is highly likely that similar signatures can
be found in two different malwares written by the same attacker when analyzed
from diverse angles. It is because those malwares essentially share the same code
or attack patterns. Using the shared signatures is a widely used technique for
distinguishing malwares from ordinary programs [1,3].
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

J.J. Jung and P. Kim (Eds.): BDTA 2016, LNICST 194, pp. 122–129, 2017.

DOI: 10.1007/978-3-319-58967-1 14

Malware Classification 123

In general, the goal of malware detection is simply to identify malwares from
benign programs. However, if we are able to define classes of malwares and to
automatically classify a given sample to its class, it would be more helpful than
mere detection. Class information could be utilized for deeper researches on
malwares such as finding countermeasures, developing treatments, and digital
forensics [2].

In this paper, we present a classifier which successfully determines the class
of a given sample with a set of classes defined by domain experts. We exploit
various static and dynamic features at the same time to achieve high classification
accuracy. Also, we show the effectiveness of our classifier via experiments.

In Sect. 2, we describe the class definition and the dataset used in our
research. Section 3 explains the various features of malwares extracted for classi-
fication. Section 4 describes the classification method. We show the effectiveness
of our classifier via experiments in Sect. 5. We conclude our paper in Sect. 6.

2 Class Definitions and Dataset

The definition of classes could differ for the objectives of applications. In this
research, we are focusing on finding the groups of attackers who release malwares.
We used a class set defined by a group of experts based on the similar attackers.
A classifier learned from such a class set should be useful for inferring which
attacker group released a given sample.

We collected 1,086 malware samples in 2015. Each sample is labeled with one
of 7 classes by domain experts. Each class has 155 instances on average. While
the largest one has 434 instances, the smallest one has 24. Table 1 shows the
number of instances in each class.

Table 1. Number of instances in each class

A B C D E F G

434 24 261 113 48 147 61

3 Feature Extraction

For classifying malwares, features that describe each malware should be
extracted. Some of these features may be signatures important to identify each
malware. Classification would be successful only if the most informative and
distinguishing features are identified and extracted.

The core files of a malware usually are in the executable binary form. Both
static and dynamic analyses could be used for analyzing such binary files. Sta-
tic analysis is conducted directly on the binary file [1]. For example, extracting
public methods or printable strings contained in the binary file and disassembling
the binary file are part of the static analysis. Dynamic analysis is conducted by

124 J. Hong et al.

running the binary code inside a controlled sandbox such as virtual machines [1].
While running, we can investigate the detailed behavior of the malware, including
network and filesystem usages.

As mentioned earlier, a large portion of malwares are polymorphic and/or
metamorphic. In such cases, the classification would be accurate only if the fea-
tures from the sufficiently various analyses are used. In this paper, we identified
and extracted the following features for our classification.

3.1 Static Features

Static features are extracted by analyzing the binary file of a malware. However,
static analysis can be seriously affected by the polymorphic characteristics of
the malware. Static analysis should be conducted with the dynamic one at the
same time.

Functions. We identify the groups of opcodes from a function chunk obtained
by disassembling the given binary file as features. If there are reused code chunks
in a new sample, we can find them by using these features. The function chunks
have variable length and they also consume large storage capacity to be indexed.
Therefore, we convert each chunk to a short fixed-length value using a one-way
cryptographic hash function [6,7].

Strings. We identify each printable strings contained in the binary code of the
malware as a feature. Most of such strings could be meaningless; however, some
of them can be used as useful signatures when attackers inserted the same string
habitually as a symbol in their own malwares [4].

Imports and Exports. Malwares could be composed of multiple files. In the
cases, the malware has the interfaces for calling shared libraries or providing
its public methods. We identify such information including the names of the
methods as imports and exports features. These features are less affected by
the polymorphic or metamorphic characteristics of the malware, thereby being
unique.

3.2 Dynamic Features

Dynamic analysis is more suitable for extracting features from polymorphic mal-
wares than static analysis. In this research, we executed the given malware sam-
ple in a virtual machine and identified the following features based on the running
behavior of the sample in its execution.

System API Calls. A large portion inside the binary code of the malware
consists of the system API calls provided by the operating system. We identify
such system API calls made by each malware as features [5–7].

Mutexes. Mutexes are used for locking of a memory location or preventing the
execution of multiple instances of the malware. The names of mutexes might be
the same normally if they are created by the same group of attackers. It is more

Malware Classification 125

likely if the codes are reused. We identify the names of mutexes used in each
malware sample as features.

Networks. We analyze the network requests from the sample and identify
their information as features. Typical examples of such information are DNS
URLs and IP addresses. Malwares are likely to use the same DNS URLS and IP
addresses if they are developed by the same attacker or developed for the same
purpose.

Files. Most of malwares show the behavior of reading or writing some files
on the filesystem. The behavior might be an act of attacking or concealing itself
among normal files. In many cases, the address on the target filesystem indicates
a location where a system file resides. The malwares developed by the same
group of attackers may share these addresses because they are determined by
the attackers heuristically. We identify such addresses as features as well.

Drops. Some malwares could extract a hidden file inside the executable binary
code to store it in a filesystem or a memory location. They are also capable of
downloading other files from the Internet. Such behaviors are called drop. We
identify the storage locations, remote addresses, and hash values of such files as
our features.

Keys. Microsoft Windows has a data storage called registry for storing settings
for most of the Windows functions and other applications. A huge number of
malwares designed for Microsoft Windows exploit it for attacking the system.
We identify all the registry keys that a sample accesses as features.

4 Classification

In this paper, we employ Decision Tree and SVM [8], both well-known clas-
sification methods to build our classifier. Decision Tree builds a tree-shaped
prediction model from the dataset by evaluating features that each item has.
This prediction model is used to determine the class of a new sample.

Figure 1 shows an example of a decision tree prediction model, where each
node represents a decision. Given a new sample, Decision Tree traverses to a child
node which satisfies the condition for the sample, starting from the root node.
The traverse is repeated until it reaches a leaf node. If Decision Tree reaches a
leaf node, it classifies the given sample as the class label of the leaf node.

To learn such tree-shaped prediction model, Decision Tree first creates a new
root node with a condition that splits the whole samples at best with a given
splitting criterion. Second, it creates child nodes for the split set of samples
and gives each of the nodes a condition that splits the samples best recursively.
Finally, if each node cannot be split, then it makes the node a leaf node and
labels the node with a class label that the most samples in the node have.

126 J. Hong et al.

A1?

Class A

True False

A2?
True False

A3?
True False

A4?
True False

Class AClass B

Class C

Class B

Fig. 1. An example of a decision tree.

We use normalized information gain [9] as the splitting criterion which is
defined as follows:

Gain(D,A) = H(D) −
∑

v∈VA

(|Dv|
|D| · H(Dv)

)

SplitInfo(D,A) = −
∑

v∈VA

|Dv|
|D| · log2

(|Dv|
|D|

)

GainRatio(D,A) =
Gain(D,A)

SplitInfo(D,A)

Here, A is a feature; D is the set of all training samples for the node; VA is the
set of all possible values of A; Dv is the set of samples with the value v; and
H(D) represents the entropy of the set D. For each node in Decision Tree, the
feature with the highest GainRatio is selected as the splitting feature.

Support Vector Machine (SVM) [8] is another well-known classification
model. SVM generally shows high classification accuracy and has ability to con-
struct complex models. Given a dataset, it tries to identify an optimal hyperplane
or an optimal set of hyperplanes which discriminate two classes of data clearly.
An optimal hyperplane is the one that has the largest margin to both classes
of data and thus helps lower the errors of the classifier. An optimal hyperplane
should satisfy the following condition:

W · X + b = 0

Malware Classification 127

W is a normal vector to the hyperplane with n elements where n is the number
of attributes, X is a set of training tuples, and b represents the bias. To find
an optimal hyperplane, we regard the equation above as a constrained convex
quadratic optimization problem to find optimal W .

5 Evaluation

5.1 Experimental Setup

In our evaluation, we verify the accuracy of our classifier by training a Decision
Tree classifier with our dataset. We used the WEKA library [10] to accomplish
our task. We conducted a five-fold cross-validation for the evaluation. We used
the following measures to evaluate the accuracy of our model:

Precision(C) =
|LC ∩ RC |

RC

Recall(C) =
|LC ∩ RC |

LC

F1(C) = 2 · Precision(C) · Recall(C)
Precision(C) + Recall(C)

Here, C is a class label; LC is the set of test samples that have the class label
C; and RC is the set of test samples that are classified as C by our classifier.
We used an weighted average over all the classes as overall accuracy, where the
weight in each class indicates the number of samples in the class.

5.2 Results and Analyses

Table 2 is a confusion matrix M that shows the number of samples in each class
has been classified to each class by the Decision Tree classifier. The rows show
the actual classes of the samples and the columns show the predicted ones. For
example, M(A,A) = 388 indicates our classifier correctly classifies 388 samples
in Class A as Class A; M(A,B) = 16 indicates it misclassifies 16 samples in
Class A as Class B. We can see that most of errors occurred in Class A that
has the largest number of samples. Also, we observe that Class D shows poor
accuracy because it does not have a sufficient number of samples. Notably, all
the samples in Class F are correctly classified. We conjecture that Class F is the
most distinguished one. Table 3 is a confusion matrix M for the SVM classifier.
Table 3 also shows similar however slightly more accurate results.

Overall, the Decision Tree classifier shows the precision of 83.60%, the recall
of 84.20% and the F1-measure of 83.40%; the SVM classifier shows the precision
of 88.30%, the recall of 88.40% and the F1-measure of 88.20%. The results verify
that our classifier performs effectively.

128 J. Hong et al.

Table 2. A confusion matrix M (DT)

A B C D E F G

A 388 7 2 5 22 0 9

B 16 41 0 0 4 0 0

C 4 0 14 1 5 0 0

D 21 1 0 11 13 0 2

E 27 3 0 1 225 0 4

F 0 0 0 0 0 113 0

G 19 2 0 1 3 0 122

Table 3. A confusion matrix M (SVM)

A B C D E F G

A 406 4 0 6 8 0 9

B 12 45 0 0 2 0 2

C 0 0 16 3 4 0 1

D 11 1 0 24 9 0 3

E 23 0 2 2 229 0 4

F 1 0 0 0 0 111 1

G 15 1 0 2 0 0 129

6 Conclusions

In this research, we have addressed a malware classifier that exploits various
features extracted from static and dynamic analyses. Our goal is to classify
an author group of the given sample. We also have verified that our classifier
provides reasonable accuracy via experiments with a real-life dataset.

As a further study, we plan to develop more accurate classifiers for malwares.
Using more features such as a control flow [3] and call frequency or identifying
a new set of features could be a good starting point towards this direction [6,7].
Another direction is to improve the training speed of our classifier by selectively
use only the features that help classification. Finally, new class definitions for
other applications can be considered as well.

Acknowledgement. This work was supported by (1), (2) the National Research
Foundation of Korea (NRF) Grant funded by the Korean Government (MSIP)
(2014R1A2A1A10054151 and 2015R1A5A7037751) and (3) the MSIP (Ministry of Sci-
ence, ICT and Future Planning), Korea, under the ITRC (Information Technology
Research Center) support program (IITP-2016-H8501-16-1013) supervised by the IITP
(Institute for Information & communication Technology Promotion).

Malware Classification 129

References

1. Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on
integrated static and dynamic features. J. Netw. Comput. Appl. 36(2), 646–656
(2013)

2. Tian, R., Batten, L.M., Islam, R., Versteeg, S.: An automated classification sys-
tem based on the strings of trojan and virus families. In: Proceedings of the 4th
International Conference on Malicious and Unwanted Software (MALWARE), pp.
23–30 (2009)

3. Cesare, S., Xiang, Y.: Classification of malware using structured control flow. In:
Proceedings of the 8th Australasian Symposium on Parallel and Distributed Com-
puting (AusPDC), pp. 61–70 (2010)

4. Islam, R., Tian, R., Batten, L.M., Versteeg, S.: Classification of malware based on
string and function feature selection. In: Cybercrime and Trustworthy Computing
Workshop (CTC), 2010 Second, pp. 9–17 (2010)

5. Park, Y., Reeves, D., Mulukutla, V., Sundaravel, B.: Fast malware classification by
automated behavioral graph matching. In: Proceedings of the 6th Annual Work-
shop on Cyber Security and Information Intelligence Research (CSIIRW), pp. 45–
49 (2010)

6. Chae, D., Ha, J., Kim, S.-W., Kang, B., Im, E., Park, S.: Credible, resilient, and
scalable detection of software plagiarism using authority histograms. Knowl. Based
Syst. 95(1), 114–124 (2016)

7. Chae, D., Kim, S.-W., Cho, S.-J., Kim, Y.: Effective and efficient detection of
software theft via dynamic API authority vectors. J. Syst. Softw. 110, 1–9 (2015)

8. Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Morgan Kaufmann,
San Francisco (2006)

9. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publish-
ers, San Francisco (1993)

10. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.: The
WEKA data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1),
10–18 (2009)

	On Exploiting Static and Dynamic Features in Malware Classification
	1 Introduction
	2 Class Definitions and Dataset
	3 Feature Extraction
	3.1 Static Features
	3.2 Dynamic Features

	4 Classification
	5 Evaluation
	5.1 Experimental Setup
	5.2 Results and Analyses

	6 Conclusions
	References

