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Abstract. Smart devices are increasingly used for health monitoring. We present
a novel connectionist architecture to detect elderly behavior shift from data gath‐
ered by wearable or ambient sensing technology. Behavior shift is a pattern used
in many applications: it may indicate initial signs of disease or deviations in
performance. In the proposed architecture, the input samples are aggregated by
functional structures called trails. The trailing process is inspired by stigmergy,
an insects’ coordination mechanism, and is managed by computational units
called Stigmergic Receptive Fields (SRFs), which provide a (dis-)similarity
measure between sample streams. This paper presents the architectural view, and
summarizes the achievements related to three application case studies, i.e., indoor
mobility behavior, sleep behavior, and physical activity behavior.
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1 Introduction and Motivation

Today there is a great availability of smart devices for health, ranging from general
purpose ones (such as phones, watches, clothes, shoes, and socks) for measuring steps,
heart rate, body motion, etc., to special medical devices for measuring blood glucose,
blood pressure, oximeter, and so on. The term smart is commonly due to: miniaturiza‐
tion, physical integration with everyday life, capability of autonomous connection and
sharing data through the Web.

However, smart applications should also include mechanisms to prevent cognitive
overload. As a matter of fact, most users when equipped with interfaces displaying data
or simple activities, like heart rate or pedometer, lose interest after a short period of time.
Studies have shown that monitoring and noticing behavioral events is more persuasive
than displaying sequences of values or labels, because it requires less cognitive work
and less user’s conscious attention [1].

In the literature, many systems have been developed to detect daily activities, such
as feeding, dressing, sleeping, walking, watching TV, etc. as a basis to represent human
behavior [2]. The detection of daily activities usually deploys different techniques,
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including machine learning and probabilistic modeling, to deal with the inherent
complex, user-dependent, time varying and incomplete nature of human-driven sensory
data and behavioral logic. Actually, much work has to be done before such systems can
be regularly managed. Another important problem of this approach is that domain
modeling raises proprietary and privacy concerns, due to the direct access and processing
of personal data sources and to the explicit modeling and tracking of personal behavior.
Moreover, when standardized daily activities are used by health professionals to assess
the functional status of people, some important requirements exist: the monitoring
system should use a limited amount of states, be highly flexible, handle uncertainty, and
allow a personalization of what to monitor and how to notice it.

To cope with the above issues, we present a novel approach, consisting in two para‐
digm shifts: a different monitoring approach and a novel connectionist architecture with
efficient setting and configuration.

The monitoring approach is based on a general-purpose wearable device and mini‐
mally affecting the subject’s everyday life [3]. The widespread adoption of wearable
devices offers an unprecedented opportunity of continuous monitoring of users’ health
[4]. For example, the use of commonly available smartphones to detect abnormal and
potentially dangerous behavior – like falls or deviation in gait pattern – has been exten‐
sively investigated in the literature [5, 6]. However, exploiting smartphones to monitor
health has some limitations: (i) smartphones are not carried by their users for long
periods during the day (e.g., the smartphone may be placed on a desk while being at
home); (ii) users can carry the smartphones at different body positions or even in a
shoulder bag, making data analysis more difficult and less trustworthy. In this context,
a great enhancement could be represented by the adoption of wrist-worn devices, like
smartwatches or smart bracelets. These devices can be worn continuously to enable deep
analysis of mobility and sleep patterns. Moreover, the position and orientation of the
device with respect to the user’s body is known in advance. We remark that the approach
focuses on detecting user’s behavior shift, a pattern used here to indicate initial signs of
disease [7]. Detection of explicit user activities and diagnosis of specific diseases are
not within the scope of the approach.

The proposed architecture relies on advanced bio-inspired techniques to simplify the
management effort. In the proposed architecture, the input samples are aggregated by
functional structures called trails. The trailing process is inspired by stigmergy [2, 8],
an insects’ coordination mechanism, and is managed by computational units called
Stigmergic Receptive Fields (SRFs), which provide a (dis-) similarity measure between
sample streams. SRFs are organized into a multilayer system, and adapted to contextual
behavior by means of the Differential Evolution (DE) algorithm [9]. Thus, the novelty
of the undertaken study relates to the structure of a receptive field and the way in which
such receptive fields are formed and adapted.

The concept of receptive field derives from a computational mechanism employed
by biological information processing systems [10]. In our approach to digital informa‐
tion processing, it relates to an architectural style consisting of a collection of general
purpose local models (archetypes) that detects a micro-behavior of the entire modeling
domain. Since micro-behavior is not individual, a receptive field can be reused for a
broad class of patients/users: the use of SRF is then proposed as a more general and
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effective way of designing micro-pattern detection. Moreover, SRF can be used in a
multilayered architecture, thus providing further levels of processing so as to realize a
macro analysis.

The paper is structured as follows. Section 2 focuses on the system architecture,
including the smart devices adopted, the structure and topology of a multilayer archi‐
tecture. In Sect. 3, three application case studies are presented. Finally, Sect. 4 summa‐
rizes conclusions and future work.

2 System Architecture

In our research different smartwatches and localization systems have been used, differing
on accuracy, type of input data, battery duration, and so on. The research regarding sleep
analysis was carried out using an LG Watch R smartwatch, which ensures battery dura‐
tion higher than 8 h. The study on physical activity was based on a Moto 360 Sport
smartwatch (Fig. 1), which provides better accuracy. Both models include an acceler‐
ometer, gyroscope, barometric altimeter, and optical hearth rate monitor (PPG), and can
be combined with ambient sensors to achieve accurate indoor positioning of the user.
An indoor positioning system used in the study of the mobility behavior is the n-Core
localization system, which exploits a mobile unit worn by the user and a static ZigBee
wireless network [2]. This system combines measures such as Receive Signal Strength
and Link Quality Indicator with a set of locating techniques to track users’ position in
real time.

Fig. 1. (a) Front side and (b) back side of the Moto 360 Sport smartwatch.

The processing system periodically takes samples of the user activity parameters as
an input and releases a mark in a computer-simulated spatial environment, thus allowing
the accumulation of marks as a trail. A mark is a trapezoid with three attributes: intensity
(height), width, and position. The position corresponds to the value of the sample where
the mark is left. Mark intensity proportionally decreases with the distance from the
position. Mark intensity in the trail has a temporal decay (the percentage of intensity
decreased after a step of time). Hence, an isolated mark after a certain time tends to
disappear. The time that a mark takes to disappear is longer than the period taken by the
system to release a new mark; thus, consecutive samples close to a specific value (clump)
will superimpose, so increasing the trail intensity. The trail can then be considered as a
short-term and a short-size action memory. Thanks to the width, the trail captures a
coarse spatiotemporal structure in the domain space, which hides the micro-complexity
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and the micro-variability in data. Trails of different sample streams can be compared to
provide a degree of similarity between a current micro-behavior, represented by a
segment of the time series, and a reference (or archetype) micro-behavior, referring to
a pure form time series which embodies a behavioral class. An example of class is raising
heartbeat, which means that the heartbeat shows a sudden increase of level over time.

The similarity processing is managed by the SRF. Furthermore, an SRF is adaptive:
its structural parameters, such as the mark attributes, are tuned by means of the DE
algorithm. The use of SRFs is proposed as a more general and effective way of designing
micro-pattern detection. Moreover, SRF can be used in a multilayered architecture, thus
providing further levels of processing so as to realize a macro analysis. Figure 2 shows
the structure of a single SRF. Here, the input is made of the data sample of the reference
signal d̄(k), represented in gray color, together with the data samples of the current signal
d(k), which periodically feed the SRF. The first three processing modules of the SRF
are exactly the same for the reference and the input segment. The modules of the refer‐
ence signal are represented as gray shadow of the corresponding modules of the input
segment.

Fig. 2. Structure of a stigmergic receptive field.

A normalization of the continuous-valued samples is assumed. First, normalized data
samples undergo the clumping process, which is a kind of soft discretization of the
samples to a set of levels. Second, the marking process produces a mark corresponding
to each data sample and represented as a trapezoidal form in figure. Third, the trailing
process creates the trail structure exploiting the accumulation and the evaporation over
time of the marks. Fourth, similarity compares the current and reference (or archetype)
trails. Fifth, activation increases/decreases the rate of similarity. Here, the term “acti‐
vation” is taken from neural sciences and it is related to the requirement that a signal
must reach a certain level before a processing layer can fire to the next layer [11].

Each SRF should be properly parameterized to enable an effective samples aggre‐
gation and output activation. For example, short-life marks evaporate too fast,
preventing aggregation and pattern reinforcement, whereas long-life marks cause early
activation. The adaptation module uses the DE algorithm to adapt the parameters of the
SRF with respect to the fitness, which is computed over a tuning set. In Fig. 2 the tuning
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set is denoted by asterisks: it is a sequence of (input, desired output) pairs, represented
on the left. In a fitting solution, the desired and actual output values (represented on the
right) are very close.

Figure 3(a) shows the topology of a stigmergic perceptron. In neurocomputing, a
perceptron computes a single output value from multiple input values, by forming a
linear combination of them, parameterized for achieving some desired mapping. Simi‐
larly, the stigmergic perceptron detects the similarity between many reference signals
(or archetypes) and the current input samples by forming a linear combination of the
most similar SRFs, parameterized for achieving some desired mapping [10].

Fig. 3. (a) Topology of a stigmergic perceptron. (b) Topology of a multilayer architecture of
SRF.

More specifically, Fig. 3(a) shows six SRFs, whose archetypes are mapped to the
natural-valued interval [0, 5]. In the output layer, the average of such natural numbers
weighted by the SRF activations is calculated, to provide a linear combination of neigh‐
boring archetypes in the real-valued interval [0,5]. Figure 3(b) shows the topology of a
multilayer architecture of SRFs. In the first layer, each SRF is fed with the input data
series, to provide the degree of similarity to each archetypal pattern. The activation of
each SRF is then used to generate a higher level time series through the stigmergic
perceptron. In the next layer, another SRF is used to provide the degree of similarity
between two time series of archetypes, i.e., current and reference time series. Here, the
adaptation is based on similarity samples provided by a human expert. This layer carries
out a macro-level similarity between two time series.

An interesting property of the proposed approach is that the provided mapping is not
explicitly modeled at design-time and then it is not directly interpretable. This offers a
kind of information blurring of the human data, and can be enhanced to solve privacy
issues. Indeed, stigmergy preserves privacy since it controls the level of perturbation of
information, which means that information is scrambled to be partially hidden but up to
preserve its utility. Stigmergy allows masking plain information by replacing it with a
mark, as a surrogate keeping some piece of the original information. Furthermore, analog
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data provided by marker-based stigmergy allows measurements with continuously
changing qualities, suitable for multi-valued classification.

3 Application Case Studies

This Section summarizes three application case studies: indoor mobility behavior, sleep
behavior, and physical activity behavior.

The research on indoor mobility behavior aims to monitor elderly people living alone
in their houses, by using a localization system [2]. The purpose is to face in a more
proactive and preventive way age-related chronic diseases such as depression, cardiac
insufficiency, arthritis, and so on. Indeed, disease situations initially lack noticeable
symptoms and then do not cause emotional involvement that could activate decision-
making, but gradual deviations of generic behavioral patterns such as mobility or vital
parameters. The indoor position of the elderly is periodically estimated by a localization
system, and taken as an input to the monitoring system. The similarity between the
current and a reference track senses the variation of the current behavior situation with
respect to what was judged a normal behavior. The normal behavior of the elderly is
established in a long-term period of stable health conditions by a relative and a healthcare
professional. The system has analyzed the data collected by a woman aged 90, affected
by depression, who has been monitored for 24 days. The system was able to detect
behavioral shift caused by depression symptoms, such as decreased appetite and with‐
drawal from socializing, increased total sleep time and nocturnal awakenings.

The research on sleep behavior aims to detect sleep deprivation [12, 13]. Chronic
sleep deficit has been linked to long-term health issues such as diabetes, high blood
pressure and heart disease, and recent studies suggest that it is the real cause of burnout.
Recently developed smart-watches have been used for monitoring sleep patterns varia‐
tion, because they can also feature sensors. Sensed data, i.e. heartbeat rate and wrist
acceleration, are processed to produce a sleep stigmergic trail of the watch wearer. By
comparing the current stigmergic trail to a trail produced in normal sleeping, it can be
derived a sort of digital sleep diary, enabling the doctor to accurately diagnose any
disorder. The system has analyzed the data collected by a woman aged 88, affected by
arterial hypertension, who has worn a smartwatch during 20 nights. As a result, the
system was able to detect behavioral shift caused by awakenings and an overall sleep
quality.

The research on physical activity behavior is a part of a larger project whose purpose
is to detect frailty in older adults [14]. Physical activity is important for healthy ageing.
Better insight into objectively measured activity levels in older adults is needed, since
most previous studies employed self-report. This is particularly important for the elderly
population, as a healthier lifestyle would enable independent living to occur for a longer
period of time. The effect of leading an increasing sedentary lifestyle is also not evident
straightaway. Thus, an alert on a behavioral shift event is significant to the user. Data
have been collected among 60 + , 70 + and 80 + years old subjects, measuring heartbeat
rate, acceleration and pedometer in a variety of physical activity levels. The system
generates an activity trail of the elderly, which can be compared with a reference trail
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to provide physical activity levels. As a result, it is able to detect behavioral shift caused
by physical weakness and loss of strength.

The first experimentation of the proposed system was carried out in the indoor
mobility behavior study. Subsequently, the system was improved with additional
modules/features, and then experimented in the sleep behavior study. Recently,
modules/features have been included for the study on physical activity behavior. The
modules/features experimented in each application case study are shown in Table 1.

Table 1. Case studies and related modules/features experimented.

Module/Feature type Application case study and related module/feature
Indoor mobility
behavior

Sleep behavior Physical activity
behavior

Smart device Localization system Smartwatch Smartwatch
Sampling rate 1 sample/5 min. 10 samples/s 10 samples/s
Input - Indoor position - Wrist acceleration

- Heartbeat rate
- Wrist acceleration
- Heartbeat rate
- Pedometer

1D/2D Input 2D 1D 1D
Processing modules - Marking

- Trailing
- Similarity
- Activation

- Normalization
- Clumping
- Marking
- Trailing
- Similarity
- Activation
- Adaptation
- Perceptron
- Multilayer

- Normalization
- Clumping
- Marking
- Trailing
- Similarity
- Activation
- Adaptation
- Perceptron
- Multilayer
- Multichannel

Output Behavioral shift
caused by depression

Behavioral shift
caused by awakenings
and sleep quality

Behavioral shift
caused by physical
weakness and loss of
strength

Subject Woman aged 90 Woman aged 88
Man aged 72

Men aged 60+, 70+,
80+

Observation period 24 days 20 nights 30 days

4 Conclusions and Future Work

This paper summarizes our research activity on monitoring elderly behavior shift. A
novel approach based on stigmergic computing paradigm and smart devices is proposed.
The challenges in the field are outlined, the novel architectural approach is illustrated
and applied to three different application case studies. The proposed architecture has
been developed and experimented, making possible the initial roll-out of the approach
into real environments. Other pilot case studies are currently undertaken, to demonstrate
that the system is effective in achieving the expected performance on a number of cases.
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