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Abstract. In this work we propose, for the first time, to improve the
performance of a Hand Pose Reconstruction (HPR) technique from
RGBD camera data, which is affected by self-occlusions, leveraging upon
postural synergy information, i.e., a priori information on how human
most commonly use and shape their hands in everyday life tasks. More
specifically, in our approach, we ignore joint angle values estimated with
low confidence through a vision-based HPR technique and fuse synergis-
tic information with such incomplete measures. Preliminary experiments
are reported showing the effectiveness of the proposed integration.

1 Introduction

In recent years, the need for accurate 3D Hand Pose Reconstruction (HPR)
has gained an increasing attention in many application fields such as virtual
reality, ambulatory human motion/activity monitoring, biomechanics, rehabil-
itation and human robot interaction [1]. Different methods proposed for HPR
can be classified as glove-based HPR (e.g., [2–4]) and vision-based HPR (e.g.,
[5]). The first type of approaches relies on the usage of wearable resistive, iner-
tial or piezoelectric sensors [1,6,7] to measure quantities related to joint angles.
Vision-based methods employ data acquired from cameras (typically RGBD) to
reconstruct hand kinematics information. However, both these approaches can
be affected by constraints that arise from the complexity in modeling the bio-
mechanics of the human hand, measurement noise, sensor resolution and visual
occlusion, among others [4]. To improve HPR performance, an important asset
is the work laid out in [1,4,8–12], where the existence of postural synergies
was exploited to enhance kinematic and joint angle reconstruction performance
and to design optimized gloves with a limited number of sensing elements. The
basic idea was to interpret postural synergies, that is, goal-directed kinematic
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activation or inter-joint covariation patterns [13,14], in terms of statistical a
priori information on the probabilistic distribution of human poses in common
tasks like grasping. This information can be fused with incomplete and possibly
inaccurate measurements provided by an HPR to increase its performance [4]
and can be used for optimal placement of sensors on a glove for HPR in order
to reconstruct hand posture, especially with a limited number of sensors [10].1

In this work, we push forward our investigation and apply, for the first time,
synergy-inspired performance enhancement to a vision-based HPR method [5].
This vision-based technique proposes to recover and track in real-time 3D posi-
tion, orientation and full articulation of a human hand from marker-less visual
observations obtained by the commercial RGBD camera Xtion PRO2 follow-
ing the optimization approach described in [5,17]. Despite its simplicity and
effectiveness, such a reconstruction procedure is affected by some intrinsic limi-
tations. For example, no-matter how the camera is placed w.r.t the hand, there
are always self-occlusions that limit the reconstruction accuracy. In this paper
we propose to discard joints estimated with low confidence and to complete HPR
through synergistic information, integrating techniques reported in [4,5].

2 Synergy-Based Hand Pose Reconstruction

For the sake of clarity, let us summarize the definitions and results from [4,8].
Let us consider an n degrees of freedom kinematic hand model, with y ∈ R

m

measures provided by an HPR system. In this case, the joint variables x ∈ R
n

and measurements y are related by the equation y = Hx + ν, with H ∈ R
m×n

(m < n) the full row rank matrix and ν ∈ R
m the vector of measurement

noise, with a zero mean and Gaussian distribution with covariance matrix R.
Our objective is to determine hand posture, which can be represented by joint
angles x in a hand model (Fig. 1), from a reduced set of measures y. This objec-
tive can be achieved by using postural synergy information. Hand synergies are
goal-directed, combining muscle and kinematic activation, leading to a reduction
of the dimensionality of the motor and sensory space. Furthermore, in robotics,
hand synergies have represented a highly effective solution for the fast and sim-
plified design and control of artificial systems (see [14] for a comprehensive review
on hand synergies and their applications). From a kinematic point of view, hand
synergies can be defined in terms of inter-joint covariation patterns, which were
observed both in free hand motion and object manipulation [14]. In [4], follow-
ing the approach introduced in [13], we embedded synergy information in an a
priori set of imagined grasped object poses N , defining a X ∈ R

n×N matrix.
This information can be summarized in a covariance matrix Po ∈ R

n×n, i.e.,
Po = (X−x̄)(X−x̄)T

N−1 , where x̄ is a matrix n × N whose columns contain the mean

1 It is worth to mention that robotics research has leveraged upon neuroscientific
insights on synergies to inform the design and control of artificial hands, see e.g.
[14–16].

2 Images and depth maps are captured at 640 × 480@24 bit and 640 × 480@16 bit,
respectively.
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Fig. 1. Hand Model used for the synergy-based Hand Pose Reconstruction.

values for each joint angle arranged in vector μo ∈ R
n. According to [4], the hand

pose reconstruction can be obtained through the minimum variance estimation
(MVE) technique as:

x̂ = μo − PoH
T (HPoH

T + R)−1(Hμo − y) . (1)

3 Visual Tracking of Hand Posture

The visual tracking of hand posture described in this paper relies on the tech-
nique described in [5]3. Within the vision-based HPR methods, a distinction
can be made between discriminative and generative: the former rely on large
datasets of hand poses to learn a mapping from the visual input to the hand
pose space [18,19], while the latter rely on 3D models of the kinematics and
appearance of a human hand, and try to match these models to the visual
input by rendering the 3D hand model and comparing it to the visual observa-
tions. This explicit handling of a 3D hand model allows the calculation of the
occluded parts of the hand and, indirectly, the level of estimation confidence.
The approach presented in [5] falls in the second category. We use as input
to our method the Xtion PRO, a camera that captures RGBD data, and the
appearance of the hand model is approximated by appropriately transformed
and positioned cylinders and spheres as shown in the left panel of Fig. 2, while
the kinematics is illustrated in the right panel of the same figure. To perform
tracking-based HPR for each input frame, we begin from an initial hand pose,
which is used to start a search using our own variant of Particle Swarm Opti-
mization (PSO) [17], as described in [5]. During tracking, a hand pose x is
sought that matches the observations O = (os, od), respectively the silhouette
and the depth map of the observed hand. The core of optimization involves

3 Implementation available online at: http://cvrlcode.ics.forth.gr/handtracking/.

http://cvrlcode.ics.forth.gr/handtracking/
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Fig. 2. Appearance (left) and kinematics (right) model of the hand used for tracking-
based HPR. The hand appearance is built out of appropriately positioned cylinders
and spheres. Colors encode different types of geometric primitives.

the comparison of a candidate hand pose x against O, with a matching error
computed from per-pixel depth differences. Specifically, a hand pose hypothe-
sis x, given the camera calibration information C yields a rendered depth map
rd(x,C). We compare this map with the respective observation od, computing a
“matched depths” binary map rm(x,C). This map in turn is compared to the
observed silhouette, so that the objective function exhibits an optimum when
the hypothesized and observed silhouettes match. Overall, the D is computed as:
D(O, x,C) =

∑
min(|od−rd|,dM )∑

(os∨rm)+ε +λ
(
1 − 2

∑
(os∧rm)∑

(os∧rm)+
∑

(os∨rm)

)
, where DM serves

as a maximum penalty in depth difference, used to smooth out the behavior of
the objective function around the optimum and λ is an experimentally deter-
mined weight factor. We formulate the final objective function by adding to the
quantity D an appropriately weighted penalty term to prevent configurations in
which hand parts (e.g., palm, fingers) occupy the same physical space. Based on
the values of this objective function, PSO improves the candidate hand poses,
eventually coming up with a hand pose that matches the input data. For more
details on the employed tracking-based HPR method, the reader is referred to [5].

4 Assessing the Confidence of Vision-Based Joint Angles
Estimation

Obtained a hand pose, in order to select the most trusted joints to be used in
the synergy-based HPR stage (Sect. 2), an estimation of the confidence for each
of them is required. We determine this confidence by capitalizing on occlusion
information. Intuitively, the confidence of each estimated joint angle is at least
partly determined by the level of occlusion of the two parts on either side of the
joint. Therefore, we first compute the occlusion for each rigid part of the hand.
Then, the confidence for each joint is computed as the product of the occlusion
levels of the two rigid hand parts linked by that joint. More specifically, given
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a hand pose x we can count the number of pixels that are drawn using each
geometric primitive of the hand model shown in Fig. 2, left. In order to provide
a normalized estimate of the visibility for each hand part, a reference pose xr is
used, in which all the hand parts are visible. In our implementation this pose is
an open hand with the palm facing the camera (see Fig. 3, left). The reference
pose is rendered offline and the area of each hand part is calculated (in pixels).
Assuming this information, we then compute the percentage of each part within
the reference pose as the ratio of its rendered pixels over the total number of
rendered pixels. Specifically, let a be the area in pixels of a hand part. Then the
i-th hand part in the reference pose xr has an area ai(xr) and respective ratio
ri(xr) = ai(xr)∑

k∈P ak(xr)
, where P denotes the set of all part indices. The vector of

precomputed ratios for all the hand parts ri(xr), i ∈ P is stored for use during
the visibility check of arbitrary hand poses. Provided an arbitrary hand pose x,
a similar computation is carried out. We first count the number of pixels ai(x)
per hand part in that pose. An area percentage ri(x) is again computed as the
ratio of hand part pixels over total occupied. The final visibility score per part
vi(x) is obtained as the ratio of its two percentages, the one computed using
the target pose over the precomputed one on the reference pose vi(x) = ri(x)

ri(xr)
.

Computed the visibility score for each hand part, the final decision per DoF
is taken by checking the two hand parts corresponding to it. If the product of
its visibility ratios is over a given threshold then we retain the estimation for
this DoF, otherwise we discard it. Figure 3 illustrates this process. The posture
is then completed with the synergy-based techniques described in Sect. 2. Note
that the visual tracking HPR method has negligible measurement noise (< 0.2◦)
and hence we have not considered it within the synergy-based reconstruction,
which was proven to be robust to noise [8].

Fig. 3. Illustration of the main idea for assessing the confidence of joint angles esti-
mation. The proximal interphalangeal joint of the index finger connects the proximal
phalanx to the intermediate one (highlighted in purple). The areas of the highlighted
phalanges in the reference pose (left) are computed offline and stored. Assuming an
arbitrary hand pose (right), we perform the same computation and compare the visibil-
ity ratios vi for each of the two phalanges. In this example, the intermediate phalanx is
almost completely occluded, lowering the confidence in the estimation for the examined
joint. (Color figure online)
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5 Integration

As detailed in the previous sections, the tracking-based HPR and the synergy-
based HPR rely on two different hand models. The model used in tracking-based
HPR is naturally induced by the parametrization of the fingers as a succession
of 3D points clusters, while the model used in synergy-based HPR was derived
from a biomechanical model of the hand [13]. For this reason, the two models,
while being fairly similar overall, differ substantially in the description of the
thumb. In order to provide a rough mapping to feed thumb angle joints from the
tracking-based HPR model to the synergy-based HPR model, a sparse sampling
of direct kinematics for the tracking-based HPR model was performed, for a
large number K of values of joint angles. For each of these instances, inverse
kinematics was performed in the model used for synergy-based HPR, imposing
a minimal distance between the position of joint centers with a least-squares
approach, assuming the same length for each phalanx. At the end of this process
we obtained a matrix of joint angles ΘS ∈ R

4×K in the synergy-based HPR,
for which each column corresponds to joint angles in the tracking-based HPR
hand model ΘV ∈ R

4×K . From these values a matrix Q = ΘS((ΘT
V )−1)T can

be obtained which gives an approximate mapping of joint angles for the thumb
from one model to the other, and an estimate of joint values in the synergy-
based HPR model can be obtained from values in the tracking-based HPR model
as θS = QθV . For the other fingers this conversion is straightforward, as it
is simply a change in sign. Figure 4 shows a block-diagram with the different
phases of integration of the tracking-based HPR system with the synergy-based
HPR algorithm. The tracking-based HPR is implemented with a python script,
while the synergy-based HPR is implemented in C++. This, together with the
fact that it is a closed form formula, ensures that the additional computational
cost introduced by the synergy-based HPR is negligible. Python script, C++
code, and hand pose visualization all run from the same PC through UDP. The
whole loop is executed with a frequency of 2 Hz (±0.1 Hz). Both input (from the
tracking-based HPR) and output (from synergy-based HPR) joint angles are
filtered with a smoothing filter.

Fig. 4. Integration of visual-based HPR system and synergy-based HPR algorithm.
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6 Preliminary Results

Preliminary experiments were performed with one 28 years old male subject and
3 objects (bag, book, and key). In the experiments the subject was provided a
picture of the object to grasp, and asked to perform a grasp action for the target
object (similarly to what was done in [13]). The subject was asked to maintain
the hand posture for 5 s. In Fig. 5 we show results of the hand pose reconstruction
from different points of view.

Fig. 5. Hand Pose Reconstruction results.

Referring to Fig. 1, we chose to use as input to the synergy-based HPR algo-
rithm the following angles from the visual tracking outcomes: TA and MP for
the bag; TA, IA, IM, IP, RA, RM, LA, and LM for the book; TA, MM, MP, RA,
RM, RP, LA and LM for the key. We selected these angles since their confidence
(whose assessment is detailed in Sect. 4) is greater than 0.5. The rest of kinemat-
ics is obtained by fusing these data with synergy-based a priori information (as
described in Sect. 2). What is noticeable is that the integration of measurements
and postural synergy information on the most probable human poses enables a
more human-like and reliable posture reconstruction, in cases where the visual
tracking of hand posture needs to deal with low-confidence estimated angles.

7 Conclusions and Future Work

In this work we have presented an integrated approach that combines optimal
HPR based on a priori synergistic information on probabilistic distribution of
human hands, and an optimization procedure to accurately track and recon-
struct hand pose from visual data provided by a commercial RGBD camera.
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More specifically, hand joint values estimated through such an optimization pro-
cedure are discarded if the confidence in their estimation is low. Hand posture is
then completed by fusing synergy information with the remaining estimates in
a Bayesian optimal fashion. Preliminary qualitative results show that the inte-
grated approach provides more realistic and accurate 3D hand tracking than the
original optimization techniques. This is particularly true in those conditions
where occlusions of parts of the tracked hands can be observed. While the per-
formed experiments considered human grasping, there is no inherent limitation
that prevents the applicability of our approach to other types of hand activities.
Future works will further develop the integration of different sensing modali-
ties as done e.g. in [12]. The idea is to push forward under-sensing approach for
wearable sensors [1] and synergy-based performance enhancement, taking advan-
tage from both visual (unobtrusive, usable) and non-visual (wearable) HPR to
increase performance in ambulatory monitoring, virtual reality and human-robot
interaction. Finally, we will perform a more quantitative evaluation of the results
in real-time hand tracking tasks, investigation how synergy information can be
used to reduce the search space for the methods described in [5].
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