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Abstract. Falls are a significant health and social problem for older
adults and their relatives. In this paper we study the use of a barometer
placed at the user’s head (e.g., embedded in a pair of glasses) as a means
to improve current wearable sensor-based fall detection methods. This
approach proves useful to reliably detect falls even if the acceleration
produced during the impact is relatively small. Prompt detection of a
fall and/or an abnormal lying condition is key to minimize the negative
effect on health.
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1 Introduction and Related Work

A large fraction of older adults (about 30% at the age of 65+) are subject to a
fall each year. Falls are one of the major causes of hospitalization and traumas
at that age. Moreover, falls frequently represent the beginning of a sequence of
physical and psychological problems for senior citizens. In fact, besides possible
physical impairments, falls may bring reduced self-confidence and in some cases
even depression [3]. The fear of falling again may also increase the chances of
incurring in a more sedentary and less independent lifestyle. Notably, social and
health problems caused by falls are going to increase because of our aging society.

Fall detection systems are aimed at automatically recognizing the occurrence
of falls. Automatic detection is useful whenever the user who falls is subject to
a loss of consciousness or a major trauma and he/she is thus unable to ask for
help. In the context of fall detection, the term long-lie is typically used to refer
to the condition of remaining on the floor for a prolonged time after a fall. It
is also known that reducing the long-lie period has a positive impact on the
outcomes of falls [12].

The majority of fall detection systems rely on wearable devices. In general,
the worn device includes one or more sensors (usually accelerometers and gyro-
scopes) that can be used to recognize anomalous movements of the users [6,9,10].
In general, events characterized by values of acceleration above a given threshold
are classified as falls. Some methods also include posture information to avoid
raising false alarms [8].
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More recently, a number of fall detection systems based on smartphones has
been presented. Common smartphones include an accelerometer, a gyroscope,
and a magnetic sensor to monitor the user’s movements. In addition, smart-
phones are easily programmable and natively include a communication subsys-
tem, which is mandatory for sending an alarm to the caregivers. The system
presented in [1] extracts a set of features from acceleration-based information;
then such features are provided as input to a classification module able to recog-
nize not only falls, but also other activities of daily living (ADLs) such as walking,
sitting, and lying.

Fall detection methods based on acceleration suffer from the problem of being
unable to recognize “slow falls”, which occur when the subject uses the hands to
soften the impact or in case of a non-instantaneous loss of consciousness. In fact,
such falls may be characterized by acceleration values that are generally smaller
than the threshold used to discriminate falls from ADLs (note that the threshold
cannot be lowered, to avoid an unbearable number of false alarms during normal
activities).

In fall detection methods based on a wearable device, the latter is gen-
erally placed at the user’s waist. The rationale for this choice is twofold: a
waist-mounted device is in proximity of the center of mass of the user; waist
is less subject to spurious movements with respect to other parts of the body
(e.g., arms). Nevertheless, we believe that studying the use of head-worn devices
deserves more attention with respect to existing literature. Practically, the hard-
ware needed for detecting falls could be embedded in headwear, glasses, or an
ear-worn device1. This would free the user from wearing an additional device in
case he/she is already using one of these accessories.

The work presented in this paper contributes to existing literature as follows:
(i) for the first time the use of a head-worn barometer is proposed and studied
in the context of fall detection, as a means to improve detection accuracy even
in the case of slow falls; (ii) changes in pressure detected by the barometer are
used not only for detecting falls, but also other simple postures (standing and
sitting); this is achieved combining the output of the barometer with acceleration
information.

2 Method

The main idea behind the proposed method is to combine accelerometric and
barometric information to improve the reliability of a fall detection system, even
when the fall produces relatively small accelerations (slow fall hereafter). In
particular, the barometer is used to measure the pressure variation associated to
a particular user’s movement, the latter being detected with the accelerometer.
The pressure variation is caused by the vertical displacement experienced by the
sensor, for example when the user sits or falls down. Such pressure variation can
be used to discriminate whether the movement led to a safe postural change
1 For example, an ear-worn device embedding an accelerometer has been used for

detecting anomalies in gait [4].
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Fig. 1. State diagram representation of the proposed method.
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Fig. 2. Slow fall example, finding pre and post-transition regions. (Color figure online)

(such as sitting down on a chair), or to a potentially dangerous situation like
being lying on the floor. The proposed technique assumes that the barometer
has been placed near to the user’s head. As previously mentioned, this position
can be conveniently used if the sensor is embedded in headwear, glasses, or a
hearing aid device. An additional motivation is represented by the fact that the
user’s head experiences the highest vertical displacement (and thus the highest
pressure variation) during a fall.

The way we aim to combine acceleration and barometric pressure is described
in Fig. 1, using a finite state machine (FSM) representation. Each state in
the FSM represents a particular posture. For the sake of simplicity, in this
study we considered only three possible postures: standing, sitting, and fallen.
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Fallen actually means that the user is lying on the floor, whatever the accelera-
tion that produced the transition to such posture. In the typical context of fall
detection (an older adult living alone), the fact that the user’s head is close to
ground level can be reasonably used as a condition to trigger an alarm, especially
if such condition persists for a significant amount of time (e.g., one minute).

When the system is started, the current posture is unknown and fall detec-
tion is based on accelerometric analysis alone. However, the FSM enters the
standing state as soon as a short interval of walking activity (gait) is detected
(e.g., six consecutive steps). To detect gait segments, the acceleration-based tech-
nique described in [8] was used. Such technique is sufficiently lightweight to be
implemented and executed in real time on a miniaturized device with limited
resources [7].

After the standing posture has been detected, the system starts to monitor
acceleration for a possible posture transition. A possible posture transition is
triggered by the presence of a “valley” in the acceleration magnitude (Euclidean
norm) signal [1,5]. The valley is detected by using a threshold (valleyTH), with
an additional test to group together valleys occurring within a short interval and
to discard valleys followed by walking activity.

The discrimination between different transitions exploits barometric analysis.
An example is shown in Fig. 2, which is relative to a slow fall happened from
standing position and ending with the user lying on the floor. Figure 2a shows
the acceleration signal, which is used to detect the valley. The local minimum
and maximum (red circles) are used to find the transition time TT (dotted
vertical line). In turn, TT is used to define two new regions: pre-transition [TT −
10 s, TT −3 s] and post-transition [TT +3 s, TT +10 s]. Finally, the barometric
signal corresponding to these two regions is analyzed (Fig. 2b). More precisely,
it is found the pressure variation ΔP as the difference between the median value
in each region:

ΔP = median(post-transition) − median(pre-transition).

A positive ΔP like in Fig. 2b, clearly indicates that the user’s head has moved
towards the ground. Conversely, when pressure drops the user is moving the
head upward, for example because of standing up from sitting position.

Posture transitions are recognized by comparing ΔP against a set of thresh-
olds. When the user is standing, a positive ΔP leads to the sitting state if the
pressure variation is within sitTH and fallTH . Instead, the FSM moves to the
fallen state state if ΔP is higher than fallTH . The rationale is that the pressure
variation is higher when the user falls to the ground, with respect to sitting on
a chair. Pressure variation is also exploited to promptly detect recovery from
fall, by comparing a negative ΔP (pressure drop) against a negative threshold
(ΔP< recoveryTH). Recovery is also detected if the user walks.

Besides activity recognition purposes, the recognition of the sitting state
represents a useful information even for fall detection. In particular, while sitting
down the user is closer to the ground with respect to the standing posture, and
the system may produce false negatives (i.e., falls that are not detected) if a
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Fig. 3. Sensitivity and specificity when varying the acceleration threshold.

pressure variation above fallTH is required to detect a fall from a chair. As
a solution, the system may temporarily disable the use of barometric pressure
for fall detection while the user is sitting. Transition from sitting to standing is
recognized either by pressure analysis (ΔP< upTH) or by detecting gait.

3 Experimental Setting

We used a Shimmer 3 device, equipped with a TI MSP430 MCU, an ST Micro
LSM303DLHC accelerometer, and a Bosch BMP180 pressure sensor [11]. The
accelerometer was set to operate within ±8 g range. The barometer was operated
in ultra-high resolution mode (0.03 hPa RMS noise). Acceleration and pressure
were sampled with ∼ 50 Hz frequency and stored on the persistent storage of
the device. To reduce noise, both acceleration and pressure were low-pass filtered
using a moving average with a 2-second window. The Shimmer 3 was attached
on a pair of common glasses, in proximity of the user’s temple.

Six volunteers agreed to participate to a supervised experiment. The exper-
iment consisted in a predefined sequence of transitions between the postures
to be recognized by the proposed method. More precisely, each volunteer per-
formed the following actions: (a) walk for about 30 s; (b) sit down on a chair;
(c) stand up; (d) short walk; (e) sit down on a different chair; (f) stand up; (g)
walk for about 20 s; (h) lie down on the floor (slow fall); (i) stand up. Volunteers
remained in each posture (standing, sitting, fallen) for at least 10 s. Experiments
were recorded with a video camera in order to facilitate manual labeling of pos-
ture transitions.

4 Results and Discussion

In this section the performance achieved by the proposed method is presented
and discussed. The evaluation starts by describing the results achieved by a
system based on a simple accelerometric threshold, in order to highlight the
contribution introduced by the combined use of acceleration and barometric
pressure.
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4.1 Acceleration Threshold-Based System

A typical approach to fall detection consists in searching for peaks in the accel-
eration magnitude above a predefined threshold. Indeed, a fall produces one or
more sharp peaks in the acceleration signal, due to the impact with the ground
of different parts of the body. The choice of the threshold is determined by
the trade-off between sensitivity (the proportion of real falls that are correctly
detected) and specificity (the proportion of normal activities that are correctly
ignored by the fall detection system). If the threshold is too high, there is a risk
of missing real falls (low sensitivity). On the other hand, if the threshold is too
low, the system is likely to produce frequent false alarms throughout the day
(low specificity) [2]. Threshold values used in the literature ranged from 2 to 3 g.

In our experiment, for each volunteer, there is one positive (a slow fall from
standing position), and some normal activities that can lead to false positives
(walking, standing, sitting). Each of these activities can be considered as a neg-
ative instance, which can be used to find the specificity (proportion of negatives
that are correctly ignored). In total there are 11 negative instances per user
(6 walking intervals, 2 sitting transitions, 3 standing transitions). We applied
different threshold values to verify the performance in terms of sensitivity and
specificity. The average result is shown in Fig. 3. It is clearly visible that the
detection of slow falls by means of a simple accelerometric threshold would lead
to an unbearable number of false alarms during normal activities. For example,
the highest threshold that would allow the detection of all the falls is 1.6 g –
such threshold leads to a specificity as low as 75%, meaning that about 3 false
alarms per user were produced during our experiment.

4.2 Proposed Method Results and Future Work

The first step of the proposed method consists in finding possible transitions,
which are identified by the presence of a valley in the acceleration magnitude.
We verified that all the effective transitions were detected by the system. In
addition to real transitions, the system occasionally detected valleys produced
during walking activity. However, such transitions were filtered out by means of
walking detection (a possible transition is discarded if it occurs during walking
activity).

After a transition is found, the system finds the ΔP value in order to deter-
mine the transition type. Table 1 shows per-user and average results in terms of
the ΔP measured during a specific posture transition. More specifically, for each
user it is shown his/her height, and the average ΔP measured while sitting down,
standing up (from sitting), falling down, and standing up after a fall. The mea-
sured ΔP is not always consistent with the effective vertical displacement (e.g.,
for user 6 there is a significant difference, in terms of absolute ΔP, between
sitting down and standing up from a chair). However, for the purpose of this
study, the most important result is that for all the users there is a measurable
difference between sitting and falling, in terms of ΔP. In the worst case (user 5),
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Table 1. ΔP [Pa] measured for each posture transition – per-user and average results.

User ID height [m] stand → sit [Pa] sit → stand [Pa] stand → fall [Pa] fall → stand [Pa]

1 1.63 3.1 −5.8 14.3 −16.3

2 1.75 3.4 −3.8 15.5 −12.1

3 1.90 6.7 −5.1 18.6 −18.4

4 1.73 3.5 −4.2 12.1 −15.9

5 1.90 9.0 −8.6 15.9 −16.0

6 1.75 3.9 −6.7 17.1 −18.9

Average 1.78 4.9 −5.7 15.6 −16.3

the “gap” between falling and sitting was 6.9 Pa (ΔP=15.9 Pa after falling, and
ΔP=9.0 Pa after sitting).

The thresholds required to discriminate different transitions were set using
a leave-one-user-out cross-validation strategy and taking into account users’
height. The cross-validation procedure consists in leaving one user out for vali-
dation, while other users’ results are used to find the thresholds. In particular,
we used the average pressure variation per meter of height displacement to esti-
mate all of the other thresholds. For example, the threshold used to detect a fall
(fallTH) was set – with a conservative approach – to 70% of the expected pres-
sure variation. The result of cross-validation was that all the transitions (posture
changes) were recognized correctly. Therefore, the system was able to detect the
slow falls without producing false alarms (100% sensitivity and specificity). This
promising result confirms that barometric information can successfully enhance
an acceleration-based fall detection system, enabling the detection of slow falls
while keeping a low false positive rate.

Future work will address some scenarios that have not been considered in
this preliminary study. For example, it will be evaluated whether the same app-
roach could be used to reliably distinguish lying on a bed from lying/falling on
the floor. Another interesting scenario is the possible presence of stairs. Walking
down a flight of stairs produces a pressure rise that may lead to a false alarm
when the user stops walking. However, acceleration and pressure information
could be used to detect walking on stairs and temporarily disable the use of
pressure for fall detection purposes. The use of pressure is then re-enabled as
soon as the user walks on level ground. In future research, we will also investi-
gate if pressure variation thresholds can be tuned automatically to the user, by
using a semi-supervised training phase based on just normal activities. Different
thresholding methods will be considered, including the use of estimated vertical
displacement derived from pressure variation. Finally, it will be evaluated the
use of a barometer embedded in a wrist-worn device.

5 Conclusions

A barometer, embedded in headwear, glasses, or an ear-worn device, can be
successfully used to detect posture transitions and improve the reliability of a
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fall detection system. Whenever a possible transition is detected by accelera-
tion analysis, the event can be safely classified as a non-fall in case the pres-
sure variation observed by the barometer is not compatible with a fall. The
barometer could be particularly helpful in recognizing slow falls, which are fre-
quently undetected in acceleration-based methods. Future work will concern a
long-term experimentation with a larger number of subjects and in uncontrolled
environment.
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