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Abstract. We have developed a rapid remote health monitoring architecture
called RASPRO using wearable sensors and smartphones. RASPRO’s novelty
comes from its techniques to efficiently compute compact alerts from sensor data.
The alerts are computationally fast to run on patients’ smartphones, are effective
to accurately communicate patients’ severity to physicians, take into considera‐
tion inter-sensor dependencies, and are adaptive based on recently observed para‐
metric trends. Preliminary implementation with practicing physicians and testing
on patient data from our collaborating multi-specialty hospital has yielded encour‐
aging results.
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1 Introduction

Remote health monitoring through the use of clinically approved wearable sensors,
integrated with the smartphones, are emerging as a promising technological intervention
to overcome the lack of affordable access to quality healthcare and timely delivery of
critical care. Sensors are now available for monitoring as many as 30 vital cardio-meta‐
bolic health indicators, including blood pressure (BP), blood glucose, electrocardiogram
(ECG), and oxygen saturation (SpO2) to alert any impending cardiac conditions such
as ischemic events or syncope. Perego et al. [1] propose that wearable sensing can be
employed even as early as in newborn babies. Frederix et al. [2] present a mobile smart‐
phone based application for monitoring coronary artery disease. Such systems enable
physicians, who are located in specialty hospitals far from the patients, to assess the
patient’s physiological condition based on received sensor values, viewed in the context
of patients’ historical electronic health records (EHR). The physicians can then initiate
delivery of timely treatment through proximally located healthcare service providers.

Extensive survey of remote health monitoring devices is presented in [3]. However,
in an experimental deployment of such systems of sensors and smartphones, we
observed the following limitations:
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• At the physician end: Physicians started to receive voluminous data from the sensors
attached to their patients. The data volume is amplified by the increased number of
patients, multiplicity of sensors on each patient, and frequent sensing of vital param‐
eters. Physicians, overwhelmed by this data volume, practically started to ignore, let
alone even attempt to interpret, and there was diminished chance of making a suitable
treatment decision in real-time.

• At the patient end: The use of popular smartphones to receive, multiplex, and
transmit sensor data continuously causes rapid power draining. As a result, there is
a good chance of inadequate power just when all sensors are required to fire in the
event of an unforeseen health condition.

A solution to overcome these challenges is to summarize the data on the patients’
smartphones prior to transmission. Recent hardware advances in both sensors and
mobile wireless devices have led to increasing quantum of interest and research in this
area. Banaee et al. [4] recognize that, recently, research in health monitoring systems
has shifted from simple reasoning of wearable sensors readings to the advanced level
of data processing.

Much of the recent research in summarization has focused on complex machine
learning techniques to aid in disease diagnosis [5]. Whereas this is a promising direction
for the future, our interactions and observations with our medical collaborators in our
inter-disciplinary research team is that, physicians are not yet ready to accord an influ‐
ential role for automated diagnosis in their patient care. We have chosen a practical
compromise: Summarization whose outcome is alerts with following attributes:

• Alerts have to accurately communicate the severity of the patient’s condition to the
physician. Alerts are computed from the sensor measurements and can take multiple
levels.

• Alerts should take into consideration observed trends in intra-sensor measurements,
and also inter-sensor severity dependencies.

• Alerts should have a feedback influence on adapting the frequency of both the sensor
measurements and summarization. By dynamically reducing the frequency during
low severity conditions, significant savings in the power can be achieved, without
compromising on the accuracy. Conversely, during high alert conditions, rapidity of
measurements and related summarization can be accelerated since delays can be life
threatening. So, in this paper, we set forth to address the challenge of accurate and
timely processing of alerts.

• Alerts should be dynamically adjustable based on the physicians’ perception of the
patients’ vulnerability to health conditions.

• Alerts should be computationally inexpensive to run efficiently on edge devices such
as smartphones.

To our best knowledge, the alert mechanisms already proposed in literature, like the
one proposed by Bai et al. [6] are targeted towards generating alarms in an ICU, and
could not satisfy all of the above requirements that we set out with.

In this paper, we propose a novel interventional time-inverted adaptive feedback
alert mechanism, which we call as RASPRO (Rapid Alerts Summarization for Effective
Prognosis) to analyze the data at the edge devices (e.g., smartphones), followed by
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transmission of alerts to the remote physician. We have based this mechanism on our
previous work [7], where we have used a motif-based representation for multi-sensor
medical data.

The remainder of this paper is organized as follows: Sect. 2 presents the overall
architecture of the RASPRO remote health monitoring system. Section 3 presents the
adaptive feedback based alert computation techniques. Section 4 presents implementa‐
tion and preliminary results, and Sect. 5 concludes the paper.

2 RASPRO Architecture

The patient side architecture (see Fig. 1) begins with sensors attached to human body
for measuring and monitoring a variety of physiological parameters such as, pulse rate,
blood pressure, blood oxygen, ECG, respiratory rate, blood sugar, temperature, etc.,
together constituting the sensing subsystem. Each of the sensors output analog signals
that are then digitized into a raw data sequence. In general, let us consider N vital sensors,
s1, s2, …,sN, each with a sampling frequency, F. The sampling proceeds continuously
for an interval of I time units, following which there may be a gap of Γ time units, and
then the sampling resumes for the next interval I, etc. Many such intervals constitute
the total observation window Φ. For instance, sampling may occur for I = 1 h every day
in a week, in which case, Γ = 23 h and Φ = 7. The relative durations I, Γ, and Φ are
patient and disease specific and are set by the physician.

Fig. 1. RASPRO remote health monitoring patient-side architecture, with three physician assist
filters (PAFs) running on patient’s smartphone. Matrices (MSM) and Motifs (CAM) are
introduced later in this section.

Then a sensor data specific comparator quantizes the digital sequence into one of
Q possible severity symbols. For instance, if Q is taken to be five, the levels are
labeled A−−, A−, A, A+ , and A++ with the symbol A indicating normality, and
subscripts “−” and “+” indicating sub-normal and above normal levels of increasing
severity. More complex parameters could be derived from sensor data and can employ
domain specific reference patterns corresponding to various severity levels. The
different severity levels are selected from the medical interpretation as well as
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physician’s input based on the patient profile. For instance the normal range of BP is
120/80 to 140/90 and there are different severity levels of hypertension and hypoten‐
sion above and below this normal range.

The severity symbol sequences, all assumed to be of same frequency, are multiplexed
at the granularity of one symbol per sensor. Its output is a sequence of timed vectors,
with each vector consisting of N values, one from each sensor sampled at that particular
instant. Any missing sensor values (for whatever reason), are filled in by duplicating the
most recent value of that particular sensor.

These vectors become the elements of a three dimensional Multi-Sensor Matrix
(MSM), with F * I columns, and Φ rows, and each element depth equal to N. The MSM
can be thought of as consisting of N two dimensional Single Sensor Matrices (SSM [1],
SSM [2],…, SSM[n],… SSM[N]), each of F * I columns and Φ rows. In the next stage
of RASPRO, the MSM is used for discovering frequent trends in sensor values that is
called consensus abnormality motifs (CAM). This is dealt with in detail in our previous
work [7].

The above modules are implemented as Physician Assist Filters (PAFs), and are
named MUX-MSM Compute Engine, CAM Discovery Engine, and Alert Delivery
Engine and they run on the patient smart phone. The computed alerts and its semantic
interpretation are promptly transmitted to the physician by the Alert Delivery Engine
via popular messaging platforms such as SMS and Whatsapp, based on the network
bandwidth availability, power constraints and severity of the alerts.

3 Alert Computation Techniques

Building on our previous works on developing a rapid severity detection and summa‐
rization algorithm, we propose the use of consensus abnormality motifs as a represen‐
tation of frequent abnormality in a large time series data.

3.1 Motifs

Candidate Motif, μCAN[n] is a temporally ordered sequence of quantized values, A*t,
A*t+1, A*t+2, …, A*t+L of length L that is selected from SSM [n]. So, the first row of
an SSM can be selected as a μCAN by selecting L = F * I and starting symbol as element
(1,1) in SSM.

Normal Motif, μNOR[n] is a candidate motif in which all values represent the normal
severity level, which means each and every value is equal to A.

Consensus Motif, μCON[n] is a candidate motif satisfying the following two condi‐
tions: its hamming distance from μNOR[n] does not exceed a physician prescribed sensor-
specific near normality bound, dNOR[n] and, its total hamming distance from all other
μCAN[n] is the minimum. μCON represents the observed patient-specific near normal trend.

Consensus Abnormality Motif, μCAM[n], is a candidate motif satisfying the following
two conditions: its hamming distance from μNOR[n] exceeds a physician prescribed
sensor-specific near normality bound, dNOR[n] and, its total hamming distance from all
other μCAN[n] is the minimum (Fig. 2).
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Fig. 2. Computation of the Motifs and Alerts from sensor matrices

It should be noted that, whereas an isolated abnormal sensor reading is indicated by
A++, A+ , A–, A−−, etc., μCAM represents the most frequently occurring abnormality
trend over the entire observation period. The parameter dNOR can be set specific both to
the patient and to the vital parameter, by the attending physician. The discovery of the
motifs is dealt with in detail in our previous work [7]. In this paper, we now present
novel techniques for computing alerts from these motifs.

3.2 Alert Measure Index

At the end of each observation window Φr, for every patient, we define an aggregate
alert score, called the Alert Measure Index (AMI). This is calculated as

𝐀𝐌𝐈[𝚽r] =
∑N

i=1
W[i] ∗

∑F∗I

j=1
𝐧𝐮𝐦(𝛍𝐜𝐚𝐦[i][j]) ∗ 𝜣[j] (1)

Wherein, the inner summation takes each severity value in the μCAM of the ith sensor,
converts it into a numerical value (e.g., A± is assigned 1, A++/−− is assigned 2), scales
it up by a severity specific factor Θ[j], and the outer summation scales it up by a sensor
specific weightage W[i], both of which are derived from medical domain expertise. We
call these two factors W and Θ as severity factors, and the resulting AMI is indicative
of the immediacy of patient priority for physician’s consultative attention.
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3.3 Interventional Time-Inverted Alerts

We propose a goal directed approach to determining the severity factors W and Θ. The
goal of delivering the alerts to the physician is to indicate the upper bound on the time
that can elapse before which the physician’s intervention is imperative to pull the patient
out of danger. In order to capture this, we define the severity factors W and Θ as follows:

Θ[α] =
K1
Δ[α]

, W[n] = K2
Δ[n] (2)

where, Δ[α] is the upper bound on the time for intervention for severity level α (which
can take on values A++, A+ , etc.), Δ[n] is the upper bound on the time for intervention
for sensor n. In (2), constants K1 and K2 can be set by the physician considering the
context of patient’s health condition (including historical medical records and specific
sensitivities and vulnerabilities documented therein). The inverse linear equation
relating the severity factor to interventional time may be substituted by more complex
equations for progressively complicated disease conditions. For instance, cardiologists
prefer an exponential increase in alert levels if the monitored patients’ ECG shows
significant ST level depression: a direct indicator of myocardial infarction.

Θ(α) = e
(

K1
Δ(𝛼)

) (3)

We are currently engaged in active dialog with collaborating physicians from our
medical school to determine the severity level - interventional time relationships for
different specialties.

AMIs also serve as a feedback mechanism to modulate sensing frequency and alert
computation instants. A low AMI is used to effect three adjustments: (1) Reduce the
frequency F of future sensor measurements to a medically allowed minimum bound,
(2) Increase the gap Γ between successive monitoring intervals, and (3) Increase the
subsequent inter-alert window Φ, thereby saving power and bandwidth of transmission.
By the same token, a high AMI causes F to increase, Γ to decrease, and Φ to increase.
We have used a linear model to relate each of these factors:

Fr+1 = Fr[1 + C1 ∗
(
AMI

(
𝜱r

)
− AMI

(
𝜱r−1

)]

𝜞 r+1 = 𝜞 r[1 − C2 ∗
(
AMI

(
𝜱r

)
− AMI

(
𝜱r−1

)]

𝜱r+1 = 𝜱r[1 − C3 ∗
(
AMI

(
𝜱r

)
− AMI

(
𝜱r−1

)] (4)

where, C1, C2, C3 are positive feedback constants adaptively set by physician’s prefer‐
ences. A very high frequency causes redundancy in summarization while a lower
frequency may result in missing sudden short duration spikes in parameters. An optimum
frequency for SDS has to be specific to the patient, sensor and severity. A detailed
discussion on setting of these constants is outside the scope of this paper.
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4 Implementation and Preliminary Results

We have built an initial implementation of the RASPRO architecture (see Fig. 3), and
carried out preliminary testing of the alerting techniques on anonymized patient data at
our 1500-bed super-specialty hospital, namely, the Amrita Institute of Medical Sciences.
Secure network protocols are used to transmit alerts (AMIs) over mobile networks, and
standard encryption techniques are used to ensure privacy. Upon viewing the received
AMI pertaining to a patient, the doctor may initiate a data pull mechanism called Detail
Data on Demand, abbreviated as “DDoD”, originating from the doctor’s device to the
cloud. The DDoD may further propagate to the patient’s smartphone if part or whole of
the data requested is still remnant on the patient’s smartphone.

Fig. 3. Implementation of the alert delivery mechanism on Mobile networks with Detail Data on
Demand (DDoD) feature

We have seen very encouraging results during the early trials of the system at the
hospital, both among the physician community as well as the patients. As early adopters
of the RASPRO system, the physicians identified the following target patient groups.
Cardiac patients with history of ischemia, diabetes, syncope and hypertension have been
using our wearable monitoring and alerting devices [8] and integration of RASRPO
alerting technique is slated to be a key enabler in identifying patients who need imme‐
diate help. Another target group are patients who need to be identified with sleep apnea
and given warnings when their heart rate and respiratory rate variability is asynchronous
in nature.

Figure 4 shows blood glucose levels measured using interstitial chips from two
patients as a representative of this group. The continuously collected 24 h raw values
are analyzed for severity and summarized at a fixed frequency and then using the
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adaptive feedback technique of (4), where Φ = 3 h in the beginning and then decreased
to 2 h, 1 h, and then finally to 20 min, corresponding to increasing severities.

Fig. 4. Performance of adaptive feedback based alerts for blood glucose level variations, as
compared to fixed frequency alerts, for multiple patients

We have very interesting observations from these data: (a) fixed frequency alerts
might lead to missing spikes of high severity, which might lead to even life-threatening
scenarios, (b) since feedback-based alerts adapt the frequency according to rising or
falling trends, they are able to pick higher severities with much better accuracy, and (c)
both adaptive and fixed alerts are similar in performance during normal times. Similar
observations were made in other patient data as well, all though due to space constraints
we have omitted from reporting here.

5 Conclusion

We have developed a novel adaptive feedback technique for timely computation of
healthcare criticality alerts and a system architecture called RASPRO for their delivery
over mobile remote health monitoring networks. The alerts are computed from severity
trends represented as motifs, and capture the inter-sensor dependencies. Alerts have
great advantages of reducing the bandwidth and energy on smartphones, as well as,
avoiding the significant data overload on already very busy doctors saving them from
the need to go through voluminous patient reports. Results from our initial pilot imple‐
mentation carried out jointly with practicing physicians are highly encouraging.
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