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Abstract. The resource management on cloud computing is a major challenge.
Resource management in cloud computing environment can be divided into two
phases: resource provisioning and resource scheduling. In this paper, we pro-
pose VM provision solution ensure to balance the goals of the party stakeholders
including service providers and customers based on game theory. The optimal or
near optimal solution is approximated by meta-heuristic algorithm – Ant Colony
Optimization (ACO) based on Nash equilibrium. In the experiments, the Ant
System, Max-Min Ant System, Ant Colony System algorithm are applied to
solve the game. The simulation results show how to use the coefficients to
achieve load balancing in VM provision. These coefficients depend on objec-
tives of cloud computing service providers.

Keywords: Load balancing � VM provision � Non-cooperative game � Ant
Colony Optimization

1 Introduction

Infrastructure as a Service - IaaS cloud computing gives users such as network
infrastructure, servers, CPU, memory, storage space as a virtual machine (VM) using
server virtualization technology. Server virtualization technology allows to create
multiple virtual machines on a physical machine (PM) and each VM is allocated in
hardware resources as real machine with RAM, CPU, network card, hard drive,
operating system and the individual applications. The resource management on cloud
computing is a major challenge. Resource management in cloud computing environ-
ment can be divided into two phases: resource provisioning and resource scheduling.
Resource provisioning phase determine resource requirements as well as quality of
service for the customer which will be allocated somewhere in the system. Resource
scheduling phase manage the life cycle of resource after it is allocated successfully.
Customers and service providers often have different requirements and may conflict
with each other. Service providers want to maximize profits by maximizing use of
resources. However, maximum exploitation of resources may not satisfy customers
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with performance and quality of service provided. To ensure quality of services,
providers must extend the same or refuse new service requirements. Optimal resource
provision is essential in the use of cloud computing resources especially IaaS. Opti-
mization problems of this type are usually NP-Hard class or NP-Complete [1]. Solution
to this problems are usually based on specific characteristics which apply algorithms
such as exhaustive algorithm, deterministic algorithm [2] or algorithm meta-heuristic
[3–5]. In experiments, almost deterministic algorithms are than better algorithms
exhaustive. However, deterministic algorithms are ineffective in distributed data
environment, thereby leading to inappropriate scheduling issues in large-scale envi-
ronment [6]. Meanwhile, cloud computing environment data is distributed, requiring
scalability, ability to meet high customer requirements to access VM provision prob-
lems by meta-heuristic is feasible. Although meta-heuristic algorithms can give near
optimal results in acceptable time, in this study, we propose provision solution ensure
to balance the goals of the party stakeholders including service providers and customers
based on game theory. Then, the algorithm used in particular meta-heuristic is Ant
Colony Optimization (ACO) to find solutions which is an optimal or near optimal VM
provision based on Nash equilibrium. The remainder of this paper is organized as
follows. Section 2 describes state or art of the model game to solve resource provision.
A game load balancing VM provision model is described in Sect. 3. The main purpose
of Sect. 4 describes the ACO algorithms for the VM provision in cloud computing.
Performance evaluation of the proposed and simulation results is described in Sect. 5.
Finally, Sect. 6 presents the conclusions.

2 Related Work

According Grosu et al., there are 3 types of models for load balancing in single issues
distributed to job class system: global, cooperative, non-cooperative [7]. The article
suggested using Nash Bargaining Solution to provide a Pareto optimal allocation that
fair allocation for all the jobs. The Fairness index is always one using the NBS which
means allocation is fair to all jobs. Besides, load balancing in heterogeneous distributed
system towards user-modeled optimal is proposed non-cooperative game by Grosu
et al. proposed in [8]. But this proposal is only applied in static load balancing model,
nor the dynamic load balancing model. For the proposed non-cooperative load bal-
ancing game, Aote et al. consider the structure of the Nash equilibrium [9]. They define
the load balancing problem and the scheme to overcome it by using new area called
game theory. Based on this structure they derive a new distributed load balancing
algorithm. Minarolli et al. proposed CPU allocation for VMs in the IaaS cloud based on
QoS aspects and operating cost [10]. Resource management model includes 2 levels:
local controller undertake CPU allocation for VM to achieve optimal at the PM locally
and global controller manages the VMs and live migration to other physical machines
for achieving maximum global utility system. But this article is only interested in CPU
resources that have not mentioned memory, disk and network. Using migration tech-
nique, Yang et al., guarantee for the full balance of the global system [11]. Ye et al.
proposed non-cooperative games Strategic model for both the load balancing server
problem and virtual machine placement problem [12]. The load balancing server

A Load Balancing Game Approach 53



problem is mapping a set of VMs which is described as a multi-dimensional vector to
PM to achieve maximum load on a PM on any minimized dimension. VM placement
problem is a set of VMs is assigned to the minimal number of PMs in which the load on
each PM is in limited capacity. The VM and the PM are not identical in terms of
capacity and configuration,… The VMs mapping PMs ensures using PMs resource
efficiently. Efficiency issues are considered as the overload of the physical machine as
using fewer machines for energy-saving materials [13]. This article suggests demand of
forecasting algorithm based on resource using exponentially weighted moving average
EWMA. Optimal changes in the use of resources on a physical machine to achieve the
optimal across the system. This method can only achieve local optimal, not global
optimization. This article only addresses allocation issues when required. When a
request arrives, the service providers must decide whether to accept or not to meet the
requirements of the system requirements of vendors that can handle this request in the
external system - an affiliate vendor. To solve that problem, Tchernykh et al. modeled
the problem towards energy-Efficient [14]. Algorithms scheduling algorithms are
evaluated on the income provider and power consumption. To achieve the fairness
between systems and customers in distributed systems, Siar et al. modeled the problem
in non-cooperative game [15]. Using genetic algorithms and hybrid popularity algo-
rithm is to find the optimal solution or the near optimal based on Nash equilibrium. In
[16] Considering the demands of end users and service providers achieves multi-QoS
indexes by calculating the load of each peer through quantitative analysis of costs,
system and network. These are peer ratings, thanks to the weights determining whether
peer matching the requirements of users while ensuring optimal goal of using resources
to save money. Sui et al. proposed strategy and recoding Spectrum sharing on
non-navigation-driven selection and Nash equilibrium cooperative game [17]. But in
general cases, it is difficult to achieve all solutions. The best solution in the Nash game
cannot describe the dynamic change of strategy players. Therefore, the Evolutionary
game theory for network selection is proposed. [18] VM scheduling problem is solved
by combining ant colony optimization algorithm and dynamic VM forecast scheduling
(VM_DFS). Through the analysis of the historical using memory in each servers
predicts the possibility of using the memory of the VM on the server in the future
which is important as a basis for finding the optimal solution for scheduling based on
ant colony optimization algorithm.

3 A Game Load Balancing VM Provision Model

3.1 VM Provision

In IaaS cloud, PMs can deploy VMs on itself based on virtualization technique. A VM
requirements r (cpu, ram, disk) correspond to cpu, ram, the virtual machine’s disk.
Ensuring the efficient use of resources as well as the use of infrastructure services IaaS
stability, allocates resources strategically in IaaS virtual machine reasonable. Maybe
modeling scheduling problems on the cloud as a directed graph DAG (Directed acyclic
Graph)) [19–21] G (V, E) where V is a set vertex represent tasks, E is the set of directed
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edges represent dependency relationships between the vertices. In Fig. 1. Presents the
ability of VM j is allocated on PM i.

3.2 A Game Load Balancing Model

To model this problem by game theory, we consider customers as the players in the
VM provision game. To ensure the system is always efficient, well, how the system
should maximize the use of PM resources evenly. To measure the efficiency of resource
using a PM, using the following formula:

hi ¼ Ui

Ti
ð1Þ

In which Ui is the resources that were used in the PM i is calculated using the
formula:

Ui ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cu2i þ ru2i þ du2i

q
ð2Þ

Ti is resources ith physical machine, is calculated as follows

Ti ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2i þ r2i þ d2i

q
ð3Þ

The load balancing system is measured by the following formula:

L ¼
Pn

i¼1ðhi � �hÞ2
n

ð4Þ

The service providers avoid wasting the resources of the physical machine.
When VM j is allocated on the host j, the waste of resources is calculated as follows:

Fig. 1. VMs provision ability graph
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W ¼
Pk

i¼1 Ai; k 2 n hosts n host j
0; if vm j is not allocated

�
ð5Þ

In which, Ai is ready to serve the resource requirements of the VM of PM i, it is
calculated as follows:

Ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ca2i þ ra2i þ da2i

q
ð6Þ

For parameter l, k 2 [0.1] to perform trade-offs between load balancing and profit
maximization. The payoff gives players the j required to serve VMs represented by a
linear combination of Lj;Wj

Fj ¼ lLjþ kWj ð7Þ

3.3 Problem Solving

Nash equilibrium is a strategy game in which no player can increase profits while other
players have a fixed strategy. Meanwhile, if the strategy of the first player i’s optimal
strategy is denoted p�i , the optimal strategy of the other players is denoted by p��i, the
Nash equilibrium strategy p�i will comply with the conditions [22], as follows:

Fi p
�
�i; p

�
i

� ��Fi p
�
�i; pi

� � ð8Þ

In multi-agent system environment, equilibrium can be unstable [23]. Also, it’s
hard to find Pareto-efficiency of Nash equilibrium. To solve this problem, most of the
algorithm is based on the algorithm meta-heuristic. The plan assigns VMs to feasible
PMs to find the optimal based on ant colonies algorithms. From feasible plan that is
based on Nash equilibrium conditions will select the best plan. When no player can
reach further payoff past estimated near optimal, it means that all players have selected
their approximated Pareto optimal strategies [15]. If Fitr

j presents player’s payoff j in

iterator itr of the ant colony optimization algorithms, Fitr
j � Fitr�1

j presents the
improment of player j’s payoff. Termination condition is the sum of square deviation of
all players’ payoff less than a small number e, i.e.:

Xn

i¼1 ðF
itr
j � Fitr�1

j Þ2\e ð9Þ

4 Ant Colony System Algorithm for Allocation VM

Ant colony optimization algorithm is proposed based on experiments on ants. Due to
the nature and chemical characteristics, every ant on the move always leaves a chemical
trail called pheromone trail along the way and they often take the path with dense
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smell. The pheromone trail is these chemicals evaporated over time. Enhancing the
learning process has the effects of raising the efficiency of the algorithm in the process
of the ants for finding the solutions. One of the first important thing in the application
of the ACO algorithm is pheromone information. Here pheromone is likely a selected
PM to allocate VM on demand, this ability depends on the current configuration and
server heuristic information. Information heuristic will be recalculated after each
allocation by the configuration information of the PM changes after each successfully
allocated VM. The recalculation will enable more accurate heuristic information for
next time allocation.

Algorithm : Ant Colony Optimization Meta-heuristic

While termination-condition not met do
 Initialization pheromone for host
Initialization heuristic for host
For each gamer
For each request VM
Calculate the probability of the valid Hosts 

    Allocate VM Based on the probability of Hosts
Update pheromone
End For
End For

 End While

4.1 Ant System Algorithm

The Ant System algorithm (AS) has two major phases: building local solutions and
updating pheromone trail. A heuristic argument is said to be good when the index starts
the initial pheromone value slightly higher than the number of pheromone can create in
each turn building local solutions [24]. After each iteration of the algorithm, pher-
omone value are updated by the smell of all the ants that had built solution on its
loop. Value sji on edge (j,i) is calculated as follows:

sji  1� qð Þ:sjiþ
Xm

k¼1 Ds
k
ji ð10Þ

In which, 0\q\ ¼ 1 is the rate of evaporation of the pheromone trail. Parameters
evaporation avoids excessive accumulation streak pheromone and eliminates the inef-
ficient PMs were selected earlier. Dski presents quality smell of ants on the edges (j,i) on
the graph are calculated as follows:
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Dski ¼
Q
Lk
if the ant k choose ðj; iÞ
0 otherwise

�
ð11Þ

In which, Q is constant, Lk is the cost of the ant k through the edge (j, i).
For each VM requirement, the program will calculate to retrieve a valid PMs

(which is eligible to allocate a VM) and the calculated probability of being selected for
each PM. The probability of each valid PM selected to allocate VM is calculated using
the formula:

pkji ¼
ð sji½ �a� gji½ �bÞP

cjl2NðspÞ
ð tjl½ �a� gjl½ �bÞ if cji 2 NðspÞ
0 otherwise

8<
: ð12Þ

In which NðspÞ is a valid set of PMs can meet the required VM k. Edge (j,l) that has
not been visited by ant k. The parameter a; b used to determine the effects of pher-
omone and information value gi heuristic, heuristic information are calculated using the
formula gi ¼ hi

4.2 Max-Min Ant System Algorithm

MAX - MIN Ant System [25] called MMAS is an improved version of AS with four
modifications: First, the only ant finds the best solution is updated pheromone, but this
can lead to delay when looking for new and better solutions for the following ants tend
to move in the directions of high pheromone concentrations (usually in the direction of
the ants before). To avoid this, a change is proposed to create limited access markings
odor 2: max and min. Pheromone value is updated as follows:

sji ¼ 1� qð Þ:sjiþDsbestji

h ismax
smin

ð13Þ

In which, the value smax and smin marginal value of pheromone, with operator

x½ �ab¼
a if x[ a;
b if x\b;
x otherwise

8<
: ð14Þ

Dsbestji ¼
1

Lbest
if j; ið Þis used

0 otherwise

�
ð15Þ

In which, Lbest is the heuristic of hosts which the best ants choose.
The pheromone concentrations are initialized by the value of the upper, which will

help to enhance the search for better solutions when searching. If the case could not
find a better solution after several attempts, the pheromone concentration trail will be
reset.
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4.3 Ant Colony System Algorithm

Ant Colony System Algorithm (ACS) [26] is proposed by Dorigo and Gambardella.
First, the ability to search the gradual increase is expected to be better than the algo-
rithm AS using the action selection rules. Second, the process of evaporation and
distributed pheromone occur only when the ant is choosing the best solution. Finally,
every time is selected to be one good solution and distribution, it also reduces the
pheromone trail of surrounding solution’s pheromone concentration.

Probability selected PM to allocate VM requirements calculated under the pseu-
dorandom proportional: the probability that an ant selects an edge (j,i) depends on the
random variable normal distribution q 2 ½0; 1�,

p ¼ argmaxcil2NðspÞ silg
b
il

n o
; if q� q0

pkji; if q[ q0

(
ð16Þ

Parameters q0 will help choose the best PM in the iteration k by using heuristic
information and pheromone concentration of PM. Using variable q0, algorithm allows
selection between PM – the best current configuration and looking for a different
approach – a PM with more appropriate configuration.

In this algorithm, only the PM is determined to be the best in the iteration shall be
updated pheromone. This can greatly affect the algorithm performance, the complexity
of the algorithm in the function updates pheromone trail will be reduced from O (n2) to
O (n) (because of the need to update PM pheromone in each level found only 1).
Pheromone value is updated as follows:

sji  1� qð Þsjiþ qDsji nê0u j; ið Þ is the best
sji otherwise

�
ð17Þ

Like MMAS algorithm, Lbest is the heuristic of hosts which the best ants choose.

5 Simulation Results

In this paper, we are concerned with the problems of the load balancing and resource
extraction. With optimal ants algorithm classes, the results depend on the parameters
e; a; b. Thus, in the experiments below, we find the appropriate parameters for the
algorithms as well as the allocation of resources for customer VMs through load
balancing levels of the system in the formula (4) and the level of resource wasting
system resources by the formula (5).

In the Fig. 2 changing e from 0.03 to 0.1, we can see ACS algorithm with a few
numbers of iteration is stable. When increasing epsilon, MMAS and AS algorithms
have reduced the number of iteration and are nearly equal to the number of iterations of
the ACS. The iterations of MMAS is higher than AS and ACS. This shows that the
algorithm MMAS has richer solutions.
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In Fig. 3 when e increases, the level load balancing and waste resource tends to
increase. Therefore, within the limits of the paper we choose epsilon = 0.05 level for the
next experiment. Choose other parameters e ¼ 0:05; l ¼ k ¼ 0:5; q ¼ 0:2; p0 ¼ 0:9.
Let the number of clients from 10 to 70. Change a; b, then the load balancing level and
waste resource level presents following (Figs. 4 and 5):

In general view, the load balancing level of all of algorithms has increased the
propensity. We consider the load balancing level of all the algorithms. The ACS
algorithm is more stable than AS and MMAS but its value is higher than AS and
MMAS. The fluctuation band of MMAS is higher. When the a is larger than the b, all
of algorithm has the same propensity.

Fig. 2. Iteration of the algorithm with e

Fig. 3. Load balancing level and waste resource level with e
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6 Conclusions

In this paper, we use the non-cooperative game for the gamers in the VM provision to
achieve load balancing. The game’s payoff calculated by combining the two parameters
load balancing and the waste resources. The load balancing parameter helps to dis-
tribute VMs to PMs based on current state of PMs. The waste resource helps service
providers to achieve optimal profits. We propose the load balancing model take care
both of customer and service provider are by using combination two parameters. The
optimal solution is approximated by ant colony optimization based on Nash equilib-
rium. The experiments show how to use the coefficients to achieve load balancing in
VM provision. These coefficients depend on objectives of the cloud computing service
provider. In the next time, we study another optimization algorithms for this problem as
well as study how to use the coefficients to achieve optimal or near optimal solution.
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Fig. 4. (a) a ¼ 0:1; b ¼ 0:9; (b). a ¼ 0:9, b ¼ 0:1.

Fig. 5. (a) a ¼ 0:3; b ¼ 0:7; (b) a ¼ 0:7; b ¼ 0:3
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