
Enhance Performance of Action Evaluation
Functions with Stochastic Optimization

Algorithms

Nguyen Quoc Huy1,2(&), Dao Duy Nam1,3, and Dang Cong Quoc4

1 SaigonTech, SaigonTech Tower, Lot 14, Quang Trung Software City,
District 12, Ho Chi Minh City, Vietnam

{huy.nq,namdd}@saigontech.edu.vn
2 Saigon University, District 5, Ho Chi Minh City, Vietnam

3 High school for the gifted, VNUHCM, 153 Nguyen Chi Thanh, District 5,
Ho Chi Minh City, Vietnam

4 Hue University, 03 Le Loi, Hue City, Vietnam
dangcongquoc@hitu.edu.vn

Abstract. In this paper, we describe how to optimize the weights of board cells
from data set of game records, the weights of board cells are applied in the
action evaluation function which usually uses to enhance Monte Carlo Tree
Search programs. The general optimization process is introduced and discussed,
and one specific method is implemented. We use Othello as a testing environ-
ment, and experiment results is better if the action evaluation function is better.

1 Introduction

The emergence of Monte Carlo Tree Search (MCTS) has led to considerable result in
resolving the difficult problems of board games with a very large search space as well
as the games that are difficult to build a board evaluation function. MCTS need not a
board evaluation function, but it needs a good action evaluation function to enhance its
performance. Static knowledge combined with an action evaluation function is a
popular method when implementing a Monte Carlo framework in order to improve the
quality of the simulated games of simulation phase as well as for knowledge bias of
selection phase. Many such systems have been developed, and used domain knowledge
encoded from game records to provide a good probability distribution for random
games. Weighting of board cells is one of many methods to incorporate domain
knowledge into board game programs. Historically, Artificial Intelligence game pro-
grammers learned the target game, and weighted the board cells by their experience.
Today, the weighting of cells can be optimized automatically by many methods, if
game records are available.

The optimization process has three main elements: variables to be optimized, the
objective function, and the optimizationmethod. This processwill optimize the variables,
the optimized variables will be applied in an action evaluation function. There are many
representations of variables, many kinds of objective functions, many optimization
methods. The optimization process is introduced detail in Sect. 3.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
P. Cong Vinh et al. (Eds.): ICCASA 2016, LNICST 193, pp. 183–192, 2017.
DOI: 10.1007/978-3-319-56357-2_19

In this paper, the variables that we want to optimize are the weights of board cells.
There are many board cells in a game board, and each cell has an important degree for
game players. How to find the best weights of board cells based on the huge game
records is an interesting problem. Evolutionary computing is an option of solving
effectively for the optimization problems. From that, our problem can be formulated as
finding a solution maximizing a criterion among a number of candidate solutions.

Othello is a popular game, its rules are simple. Moreover, we have already the high
quality Othello game records. Thus, we select Othello as a testing environment for our
research. Because of the symmetry of game board, so we need to find the weights of
nine positions {A1, B1, C1, D1, B2, C2, D2, C3, D3} such that the winning probability
of a selected move from data set of game records is maximal (see Fig. 1(b)), instead of
weighting the board cells by experts (see Fig. 1(a)) [9]. Because the weighting by
experts is not precise in complex board such as Shogi, Go. Besides, we have many
levels of game records, the automatic weighting is very comfortable in adjusting the
strong level of board game program.

This paper is organized as follows: Section 2 discusses related work about MCTS
and knowledge encoding, Sect. 3 explains the problem description and our method in
details, Sect. 4 presents experimental results and evaluating them, and Sect. 5 presents
our conclusions and future work.

2 Related Works and Background

This section introduces some related works, and we focus on three things: (1) What is
MCTS, (2) how to obtain knowledge from game data before adding it into MCTS, and
(3) how an action evaluation function improve MCTS.

Fig. 1. The board cells to be optimized

184 N.Q. Huy et al.

2.1 Learning from Game Records

There are many methods to extract knowledge from professional game records.
A popular approach to automatically generate patterns is supervised learning such as a
pattern extraction scheme for efficiently harvesting patterns of a given size and shape
[3], using the relative frequencies of local board patterns observed in game records to
generate a ranked list of moves [2], using a neural network approach to generate local
moves [6], using the K nearest-neighbor representation to generate local moves [1], or
automatic acquisition of tactical patterns for eyes or connections [7]. In this approach,
expert knowledge is used to choose some relevant pattern shapes and pattern features,
and then a machine-learning algorithm is used to find the patterns corresponding to
these shapes and features, and then to evaluate them. The advantage of automatic
pattern learning over hand-made patterns is that thousands of patterns may be generated
and evaluated with little effort, and little domain expertise [4]. Also, Michael Buro
proposed a Generalized Linear Evaluation Model (GLEM) [10] for building
pattern-based evaluations. In this model, feature weights are optimized by using linear
regression, and then GLEM combines automatic feature space exploration with fast
numerical parameter tuning by building patterns from atomic features and assign
pattern weights by linear regression. This model is suitable for algorithms that need an
evaluation function such as minimax, alpha-beta, and negamax. In this paper, the
knowledge to apply into the action evaluation function to enhance MCTS programs is
the weight of board cells. The weight will be optimized by optimization process. It will
search the best value of each cell such that all values of cells will be the most matching
with the data set of game records.

2.2 Improving the MCTS with Static Knowledge

Monte Carlo Tree Search is a method of finding optimal decisions by taking random
samples in the decision space. With static knowledge, MCTS can use an action eval-
uation function to enhance the quality of simulated games better than that of random
simulations as well as the accuracy of selection policy.

Simulation Improvement: Probabilities and selections are two characteristics this
step for the quality of simulated game. The selection in simulation phase is different
with the selection step of MCTS, we can choose one of approaches such as
Roulette-wheel, tournament selection, Reward-based selection, stochastic universal
sampling, and Rank-base selection.

Progressive Strategy: The UCB + MCTS will be done accurately if the number of
playouts is high. In case of the branching factor is high but the number of playouts is
low, the UCB + MCTS will be inaccurate. Using a probability model with static
knowledge to improve the move search more efficient is called progressive strategy.
There are two progressive strategies: (1) Progressive widening first reduces the
branching factor, and then increases it gradually to limit the number of search moves.
(2) Knowledge bias uses knowledge to direct the search to give a bonus to make UCT

Enhance Performance of Action Evaluation Functions 185

be more accurate if the number of playouts is low. Adding a bias in UCB formula is
applied in several MCTS programs such as Erica and Zen. Our paper is based on the
integration between knowledge action evaluation function with UCB formula [11].
There are many formulas, but the following formula is the sophisticated one.

UCBbiasðiÞ ¼ wi

ni
þC �

ffiffiffiffiffiffiffi
ln n
ni

r

þCBT �
ffiffiffiffiffiffiffiffiffiffiffiffi
K

nþK

r

� PðmiÞ ð1Þ

where CBT is the coefficient to tune the effect of bias, and K is a parameter that tunes
the rate at which the effect decreases. P(mi) is the action evaluation function [11].

3 Problem Description and Our Method

The main purpose of this paper is finding the optimized weights of board cells. This is
an optimization problem, and has three elements: (1) variables to be optimized, (2) the
objective function, and (3) the optimization method. Figure 2 shows the optimization
process of variables following an objective function.

3.1 Variables to be Optimized

In board games, the board cells have the different weights following the board game
experts. However, the weighting from experts may be not optimal. Thus, we need an
optimization method to find the optimal weights of board cells based on the game
records. Beside the weights of board cells, there are many kids of other features such as
patterns, local shapes, pattern shapes, etc. As the board of Fig. 1(b), we consider nine
cells A1, B1, C1, D1, B2, C2, D2, C3, D3, these cells are the variables that need to be
optimized in this paper. Let x = {x1, x2… xm} be the set of cell weights in the con-
sidered part of board. Element x1 is the weight of board cell A1, element x2 is the
weight of board cell B1,.., element x9 is the weight of board cell D3. The elements of
x is called the variables that need to be optimized.

Fig. 2. Process of variables optimization.

186 N.Q. Huy et al.

3.2 Objective Functions

To select the best move from legal moves based on the game records, we usually use
some following formulas.

f1ðH; xÞ ¼
PHj j

i

probða�i Þ
Hj j

f2ðH; xÞ ¼ fs;a� probða�\0:1j gj j
Hj j

f3ðH; xÞ ¼
PHj j

i

rankða�i Þ
Hj j f4ðH; xÞ ¼

PHj j

i

P
a 6¼a�

sigmoidðprobðaiÞ�probða�i ÞÞ

Hj j

where probða�i Þ ¼ valueða�ÞP
a2A

valueðaÞ is a probability of a move on all legal moves in a state

of board. In Fig. 1(a), we can calculate the probability of a move from the legal moves
(B4, C1, F3, G2) in the state of board. The result are probðC1Þ ¼ 4

3þ 4þ 6þ 1 ¼
28:57%; probðB4Þ ¼ 21:42%; probðF3Þ ¼ 42:85%; probðG2Þ ¼ 7:14%

Then, probability of F3 is the highest, and the action evaluation function will select
move F3.

Let H be a set of game records, | H | be the number of moves in set H. The move ith

is represented by a pair ðsi; a�i Þ, where si is state of board at the move ith. Let A be a set
of legal moves in state s, a 2 A is a legal move, a* 2 A is a selected move. We see that
the Eq. 2 is the most natural one, so it is selected in our method. From that, we can try
can compare with other objective function by using Eqs. 3, 4, 5.

3.3 Optimization Method

Some following optimization methods can be used.
Random Search. Given a current solution x, if a new random solution x0 is better

than current solution x, then x ¼ x0. After many iterations, the solution is much better
than the initial solution. The cost of this method is low, but the expected performance is
not high.

Hill-Climbing. Given a current solution x, the new solutions are in neighborhood
region of the current solution. If a new solution x0 is better than current solution x, then
x ¼ x0. After many iterations, the solution is much better than the initial solution. The
cost of this method is higher than that of random search, and the expected performance
is also higher. This method is always achieved the local optimum.

Simulated Annealing (SA). This method spends more cost than LS to overcome
some traps of LS, then the global optimum can be achieved.

Genetic Algorithm (GA). It is difficult to compare the performance between SA and
GA, but we can see the cost of SA is lower than GA in generating and evaluating the
new solutions.

Brute Force. This method is useful if the search space is small. It is difficult to be
used if the search space is large, and the cost of this method is always the highest.

Enhance Performance of Action Evaluation Functions 187

3.4 Our Method

From three elements of optimization process, we can see that there are many methods
that are combined by these elements. With the variables are vector x, our method uses
the Eq. 2 as the objective function, Hill-Climbing or Simulated Annealing as an opti-
mization method. We select Hill-Climbing or Simulated Annealing to balance between
the cost and performance. Figure 3 shows the selected elements of our method.

Let x = {x1… x9} be the variables to be optimized, D = {d1… d9} be the neigh-
borhood region of x; cho di ¼ xi=10. Let x0 ¼ x01. . .x

0
9

� �
, such that xi � di �

x0i � xi þ di � Hj j is the number of moves in set of game records H. Each Riversi
game record has maximum 60 moves, suppose that the average of each game records is
59 moves, set H has 1000 game records, so the total number of moves is 59000. Each
selected move a* leads to a new state of board, the board state includes the set of legal
moves A. From that, we can calculate the probability for a selected move prob(a*)
based on the weights of board cells. Average of 59000 probabilities is the value of
objective function. After many iterations, the value of objective function is increased as
the Fig. 4.

Fig. 3. Process of variables optimization.

188 N.Q. Huy et al.

In Simulated Annealing, select randomly a state x0 in the neighborhood region
of x. If x0 is better than x cost x0ð Þ[cost xð Þð Þ, then x0 is selected. On the contrary, the
state x0 is selected with some probability. The probability is decreased by the “badness of
state x0. The probability depends on the temperature T. The higher the temperature T is,
the more the bad state is selected. In searching process, temperature T decreases grad-
ually to zero. When T is close zero, the behavior of Simulated Annealing looks like that
of Hill-Climbing. The probability of selecting the bad state between x0 and x is eD=T ,
where D ¼ cos tðx0Þ � cos tðxÞ. Figure 5 is the evolutionary behavior of Simulated
Annealing, it differs with evolutionary behavior of Hill-Climbing.

Fig. 4. An evolutionary behavior of Hill-Climbing.

Enhance Performance of Action Evaluation Functions 189

4 Experiments and Evaluation

This section presents the experiments of Hill-Climbing, and Simulated Annealing.
From that, we selected the best vector of weights, and applied it into the action
evaluation function. The performance of Riversi MCTS is enhanced with the action
evaluation function. The process of optimization was performed on game records
played by strong players on a site of Michael Buro [5], author of Logistello program.

A. Experiment Results of Hill-Climbing
The parameters for Hill-Climbing:

• Initially, x = {496, 22, 161, 111, 4, 58, 39, 38, 89}
• The maximum iterations but no any candidate were found: 2000
• Number of game records: 480.000

Fig. 5. An evolutionary behavior of Simulated Annealing.

Table 1. The evolutionary process of vector x

Iter A1 B1 C1 D1 B2 C2 D2 C3 D3 f1(H,x)

init 496 22 161 111 4 58 39 38 89 0.170907
1 503 17 161 88 8 44 59 61 114 0.172096
2 484 27 141 89 16 53 54 43 108 0.175772
4 507 13 149 86 18 43 49 35 92 0.177810
63 508 13 143 114 12 40 61 37 105 0.178249
162 506 23 138 112 17 35 52 39 108 0.178436
179 517 17 142 102 17 37 52 36 93 0.178454
631 510 26 148 113 10 35 60 36 108 0.178508
645 505 31 155 100 16 35 61 38 107 0.179525
967 498 20 144 90 17 38 64 36 103 0.180125
1350 502 16 153 106 18 36 64 35 106 0.180930
…

3350 502 16 153 106 18 36 64 35 106 0.180930

190 N.Q. Huy et al.

Table 1 shows the evolutionary process of function f1. The value is evolved by
Hill-Climbing method and stop at iteration 1350. We implement Hill-Climbing method
many times, and Table 1 is the best one.

B. Experiment Results of Simulated Annealing The parameters for Simulated
Annealing:

• Initially, x = {496, 22, 161, 111, 4, 58, 39, 38, 89}
• Number of game records: 480.000
• Initial temperature: Tinit = 0.001
• Stop temperature: Tstop = 0.0001
• Coefficient of temperature decreasing: gamma = 0.999
• Number of iterations (for these parameters): 2301

The neighborhood candidate in Simulated Annealing procedure is changed two
random elements in nine elements of vector x. The Simulated Annealing is imple-
mented many times, and Table 2 is the top-4 data of many times.

C. Applying Monte Carlo Tree Search Program The Monte Carlo Tree Search
program in this paper is Riversi MCTS, we implemented a Riversi program based on
Monte Carlo Tree Search instead of Alpha-Beta. Besides, we also have the other strong
Riversi which is implemented by Alpha-Beta. The Riversi is downloaded from the
Internet (http://www.codeproject.com/Articles/4672/Reversi-in-C), we use it for com-
paring with our program Riversi MCTS.

The best set of weights x = {458, 416, 255, 196, 10, 73, 73, 38, 97} is selected, this
set is the variables that make the objective function have the highest value f1(H, x) =

0.182423. Apply the weights into the action evaluation function probða�i Þ ¼ valueða�ÞP
a2A

valueðaÞ,

the Riversi_MCTS program is improved, Table 3.

Table 2. Top-4 Data of Simulated Annealing

Stop at A1 B1 C1 D1 B2 C2 D2 C3 D3 f1(H,x)

2301 458 416 255 196 10 73 73 38 97 0.182423
2301 464 459 277 212 11 66 69 36 85 0.182348
2301 501 317 302 144 7 55 68 74 96 0.181988
2301 492 343 449 222 4 77 98 81 63 0.181574

Table 3. Performance of Riversi_MCTS before/after using action evaluation function

Before After

Riversi_MCTS 343 432
Riversi (expert level) 657 568
Result 657/1000 = 34.3% 568/1000 = 43.2%

Enhance Performance of Action Evaluation Functions 191

http://www.codeproject.com/Articles/4672/Reversi-in-C

5 Conclusion

This section reviews our work, summaries the experiment results, and discusses the
future work. The first, we introduce a process of optimization which has three
important elements: Variables to be optimized, the objective function, and the opti-
mization method. This process is used to optimize the features from a given set of data.
The feature is considered in our paper is the weights of board cells. These weights are
applied in the action evaluation function to enhance the MCTS program.

In experiment, we use Hill-Climbing and Simulated Annealing as the optimization
methods to balance the cost and the performance of experiments. From that, the best set
of weights is found out. These weights are applied into the action evaluation function
of our Riversi MCTS program. Performance of MCTS program is improved in com-
paring with other strong Riversi. However, the performance of Riversi MCTS is still
not better than that of Riversi. We have a plan to study in other features instead of the
weights of board cells. Besides, this method can be applied in other board games.

References

1. Araki, N., Yoshida, K., Tsuruoka, Y., Tsujii, J.: Move prediction in Go with the maximum
entropy method. In: Proceedings of the IEEE Symposium on Computational Intelligence and
Games (2007)

2. Stern, D., Herbrich, R., Graepel, T.: Bayesian pattern ranking for move prediction in the
game of Go. In: Proceedings of the 23rd international conference on Machine learning,
Pittsburgh, pp. 873–880 (2006)

3. Coulom, R.: Computing Elo ratings of move patterns in the game of Go. In: Computer
Games Workshop, Amsterdam, Netherlands (2007)

4. http://skatgame.net/mburo/ggs/game-archive/Othello (2012)
5. Werf, E., Uiterwijk, J.W.H.M., Postma, E., Herik, J.: Local move prediction in Go. In:

Schaeffer, J., Müller, M., Björnsson, Y. (eds.) CG 2002. LNCS, vol. 2883, pp. 393–412.
Springer, Heidelberg (2003). doi:10.1007/978-3-540-40031-8_26

6. Cazenave, T.: Automatic acquisition of tactical go rules. In: 3rd Game Programming
Workshop in Hakone, Japan, pp. 10–19 (1996)

7. Chaslot, G., Bakkes, S., Szita, I., Spronck, P.: Monte-Carlo tree search: a new framework for
game AI. AIIDE 2008

8. http://www.apld.co.uk/riscworld/volume3/issue5/agrm/chap09.htm
9. Buro, M.: From simple features to sophisticated evaluation functions. In: Herik, H.J., Iida, H.

(eds.) CG 1998. LNCS, vol. 1558, pp. 126–145. Springer, Heidelberg (1999). doi:10.1007/
3-540-48957-6_8

10. Ikeda, K., Viennot, S.: Efficiency of static knowledge bias in monte-carlo tree search.
Computers and Games 2013 (2013)

192 N.Q. Huy et al.

http://skatgame.net/mburo/ggs/game-archive/Othello
http://dx.doi.org/10.1007/978-3-540-40031-8_26
http://www.apld.co.uk/riscworld/volume3/issue5/agrm/chap09.htm
http://dx.doi.org/10.1007/3-540-48957-6_8
http://dx.doi.org/10.1007/3-540-48957-6_8

	Enhance Performance of Action Evaluation Functions with Stochastic Optimization Algorithms
	Abstract
	1 Introduction
	2 Related Works and Background
	2.1 Learning from Game Records
	2.2 Improving the MCTS with Static Knowledge

	3 Problem Description and Our Method
	3.1 Variables to be Optimized
	3.2 Objective Functions
	3.3 Optimization Method
	3.4 Our Method

	4 Experiments and Evaluation
	5 Conclusion
	References

