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Abstract. Email overload, even after spam filtering, causes waste of time and
reduction of work efficiency to email users. Email prioritization is the general
solution for the problem. The idea is to sort incoming emails in a decreasing order
of importance so that the most important messages are read and processed first
and less significant ones later, if there is enough time. This paper proposed a
method to predict the action that a user would take on an email. The method is
based on SpamAssassin, a famous spam filter framework. Instead of classifying
emails as spam and ham (non-spam message), this method is used to predict
amongst the three most common actions: reply, read and delete. Experiments are
conducted to measure the effectiveness of the new method on a dataset built by
the authors.
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1 Introduction

Communication over the Internet has become crucial in every country and in every
aspect of the modern society. Among the many applications of the Internet, email is one
of the most used, most important. Email allows people to exchange information in a fast,
reliable and cost-effective way. According to statistics reports, the number of emails
sent per day in 2015 is approximately 205.6 billion and the figure is expected to be 246.5
billion in 2019 [14]. Along with email’s increased usage volume come a great number
of unwanted messages called spam (unsolicited bulk email). With a large number of
spam, it takes more time for email users to process daily messages.

Spam’s bad impacts led to the need for spam filtering. There have been many
approaches to spam filtering which can be divided into two main categories: SMTP-
based filtering and machine learning [1].

The SMTP-based filtering category addresses the weaknesses of SMTP — the
protocol used for sending email. For instance, SMTP does not verify email senders [1],
leading to the fact that it is trivial to fake email sender. Attackers can exploit this weak-
ness to send spam or perform online phishing. To tackle that flaw, researchers have
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introduced several methods to verify the sender including Sender Policy Framework
(SPF), DomainKeys Identified Mail (DKIM) and SenderID. This category also includes
methods such as Blacklisting, Greylisting and so on.

Approaches in the machine learning category focus on analyzing email content using
a classifier. Many classifiers and their variations have been applied to detect spam [11,
15], e.g. Naive Bayes, k-Nearest Neighbor (kNN), Support Vector Machines (SVM),
Term Frequency-Inverse Document Frequency (TF-IDF) and so on. Methods in this
category have been widely applied and the current state-of-the-art methods are based
on Bayesian filters with filtering rates exceeding 99.5% [15].

The popularity of email also leads to the email overload, even after spam filtering.
The problem tends to get more serious as Spira and Goldes stated in their study [6] that
a typical office worker gets around 200 legitimate emails per day. High-level officers
and managers receive even more emails. Emails of different levels of importance are
mixed, making important emails easy to be missed.

The above issue can be solved with email prioritization — sorting incoming emails
based on their importance. There are two different groups of email prioritization
methods. The first group employed regression-based methods [3, 7, 8] because it
assumes the linearity of email’s importance. The second one considers it a multiclass
classification problem. The number of classes is usually three [2, 4] or five [8§—10]. User
action prediction falls into this category. These studies have yet to achieve a practical
performance. This field of study is a new, highly potential one. Therefore, it requires a
lot more efforts to be made.

This paper proposes a new method which utilizes SpamAssassin to predict user
action on an email. It involves automatic generation and optimization of different
SpamAssassin rulesets in order to turn SpamAssassin into a multiclass classifier. Popular
multiclass classifier building techniques (OVA, OVO and DAG) are tested against a
self-built personal email dataset. Two experiments are conducted to test the prediction
rate of the new method as well as its degree of personalization.

This paper’s main contribution is as follows: A new method to predict user action
on emails based on SpamAssassin is proposed; Experiments to compare different
methods using different sets of personalized email data were conducted; Through our
experiments, we evaluated the impact of personalized factors on the results of our
method.

The remaining of this paper is organized as follows: Section 2 reviews papers related
to the user action prediction problem; Section 3 explains the proposed method in details;
Section 4 describes two experiments that we conducted and their results; Section 5
concludes our findings and suggests directions for future works.

2 Preliminaries

2.1 Studies on the User Action Prediction Problem

User action prediction aids users in processing daily emails by automatically determine
the action that should be done on an email. If a user knows which email should be replied,
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read or deleted, he will be able to take suitable actions in order to save time. There have
been a few studies to tackle this problem.

The problem was first introduced in 2005 [5]. Authors of [5] evaluated the factors
that affect user’s responses to incoming emails in order to produce a method to predict
user action. Their study was done through an online survey in which questions are
divided into three parts. The first part is to collect users’ work environment information
and the characteristics of their jobs. The second part asks about users’ email usage and
habits. The last part gathers information on content characteristics, level of importance,
characteristics of the sender and associated actions on emails. The study used a self-built
dataset with 1100 email messages. 124 persons took part of the survey. 10 features were
used to predict the importance of an email. This study found that there is correlation
between the importance/probability to get replied of an email and user’s relationship
with the sender as well as the email’s content.

In [2], the authors proposed an email user action recommender system. The system
is essentially a Bayesian multiclass classifier where each class represents a user action.

LTINY3

There are three user actions: “reply”, “read” and “delete”.

2.2 SpamAssassin

SpamAssassin is a popular open-source spam filter which operates on multiple platforms.
It uses a set of weighted (scored) rules to identify spam. Most of SpamAssassin rules are
basically Regular Expressions used to find textual structures which indicate that a message
is spam. Figure 1 shows an example of SpamAssassin’s rule.

body MONEY_BACK /money back guarantee/i
describe MONEY_BACK Money back guarantee
score MONEY_BACK 2.910

Fig. 1. A typical SpamAssassin body rule.

In Fig. 1, there is a body rule named MONEY_BACK. This rule checks if the body of
an email contains a string that matches the RegEx “/money back guarantee/i” and adds a
score of 2.910 to the total spam score of that email. The higher the total score, the more
likely a message is spam. By default, all emails whose total score is equal to or higher than
a threshold 7'= 5.0 are considered spam by SpamAssassin. The threshold 7" can be adjusted
by user. Equation (1) shows how SpamAssassin calculates the total score for each message.

k
Scoreg(m) = ZMatch(Ri,m) Xw; (@)

i=1

where:

Scoreg(m) returns the total score against ruleset R for the message m.

R is a set consisting of k rules (R;... Ry).

— Match(R,m) returns 1 if m contains a string that matches rule R;, O otherwise.
w is a set of k scores (wy...wy) corresponding to k rules.
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The score return by Scoreg(m) is compared to the threshold 7 to determine if m is
spam using Eq. (2).

_J 1, Scorexg(m) > T
Spamg(m) = { 0, Scorex(m) < T @)

2.3 Automatic Generation of SpamAssassin Rules

The study in [12] proposed the method for automatic generation of SpamAssassin rules
to detect spam in Vietnamese. That process can be summarized as follows:

Step 1 — Dataset preparation: According to data labels, separate the training set into
two parts. The first part, called D, contains spam messages and the order part — D, —
contains ham messages.

Step 2 — Extracting words: The Vietnamese tokenization tool vnTokenizer [13] is
used to extract words from the email subjects in D, into the set WS;. Similarly, words
from the content of all emails in D, are extracted into the set WB;.

Step 3 — Selecting keywords: The most frequent words from WS; and WB; are kept
and put into two new sets, WS, and WB,.

WS, =Vw € WS, freqys (w) > a
WB, =Vw € WB,, freqy, (w) >

The function freqy, (w) returns the times which the word w appears in WS). The two

parameters, @ and f, should be adjusted according to the size of the dataset. In our
experiments (which are described later in Sect. 4), we use the value 2 and 6 for a and 8
respectively.

Step 4 — Building ruleset: A ruleset R is build. Subject rules are generated from the
keywords in WS, and body rules are generated from keywords in WB,. Figure 2 shows
the structure generated rules. In Fig. 2, <word> is replaced by the actual keyword from
the two keyword sets.

header ReplySubj_i Subject ~= /\b<word>\b/i
describe ReplySubj_i Subject contains “word”
score ReplySubj_i 0.1

Fig. 2. The structure of auto-generated rules for SpamAssassin.

Step 5 — Rule selection: SpamAssassin’s MassCheck tool is executed to see how the
rules in R; are matched against emails in D; and D,. Bad rules — rules with low hit rate
or rules which match both spam and ham — are removed to create a new ruleset called R,.

Step 6 — Weight (score) optimization: First, the MassCheck tool is executed again
for the new ruleset (R,). In R, each rule is initialized with a score value 0.1. A perceptron
with a linear transfer function and a logsig activation function is built. Its weights are
mapped to rule scores. It is then trained using the Stochastic Gradient Descent method
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to achieve highest spam recall and lowest ham error rate [18]. When training completes,
the ruleset R; is created from R,’s rules and trained scores.

3 Email User Action Prediction Based on SpamAssassin

SpamAssassin, or more specifically, a SpamAssassin ruleset, is able to separate spam
from ham. Therefore, it is a binary classifier. In this paper, we make SpamAssassin a
multiclass classifier to predict user action (REPLY, READ, DELETE) on an email. Our
proposed method can be easily configured to build a system which classifies emails into
more than 3 classes. We apply three different approaches of building multiclass classi-
fiers: OVA, OVO and DAG.

The authors of this paper observed that different generated SpamAssassin rulesets
have different spam recall and ham error rates at different thresholds. This is not a
problem when using a single ruleset. However, to perform multiclass with SpamAs-
sassin, multiple rulesets are required. Therefore, in addition to 6 steps of rule generation
described in Sect. 2.3, we add one more step to find the best threshold for each ruleset
created. The best threshold for a ruleset is defined as one which achieves the highest
spam recall while ham error remains lower than 1%.

3.1 OVA (One vs. All)

Assume that we have N classes called X; (i = 1, 2...N, N > 2). N binary classifiers called
C; (i=1,2...N) are needed to build a classifier for N classes using OVA method. Each
classifier C;is able to separate data of class X; (One) from data of the other (N — 1) classes
(All). As mentioned before, a SpamAssassin ruleset is equivalent to a binary classifier.
Therefore, we need to build N rulesets for OV A to work. The algorithm for the prediction
process of the OVA method is described in Fig. 3.

Input:  An email message m

Nrulesets RS; (i=1,2...N)

N thresholds for the rulesets 7; (i = 1, 2...N)

A default class (in case all rulesets return 0)
Output: An integer indicating the class for the message m

1. SetS = new Array(), max = 0, class = defaultClass
2. Fori=1-N

3. Set S; = Scoregs,(m) +T; — 1

4 If (5; > max) then { Set class =i, max = S; }

5. Return (class)

Fig. 3. OVA prediction algorithm.

When building the ruleset for class X; using the process described in Sect. 2.3, the
D, should consist of emails marked as X; and D, should contain the emails from all other
classes. After the process, a ruleset RS; should be created and there should be N rulesets
(RS1, RS,...RSy).
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3.2 OVO (One vs. One)

In this method, there exists a binary classifier between any pair of different classes. The
input data is tested against all classifiers and results them are aggregated to produce the
final prediction. However, there are many aggregation models for OVO. In this paper,
we adapt three most popular models which are MS (Max Sum, also called “Weighted
Voting”) [17], MV (Majority Voting) [16] and MC (Most Confident) [8].

For N classes, the number of binary classifiers needed is Ny = N X (N—-1) + 2. For
instance, when N = 2, 3, 4, Ny = 1, 3, 6. This means Ng rulesets RS;;, in which i and j
represents two different classes among N classes, should be built. When building RS;;
using the method described in Sect. 2.3, the set D should contain emails from class X;
and D, should contain emails from class X;. The threshold for R;;is T;;. To predict using
the OVO-MS aggregation model, we use the algorithm shown in Fig. 4.

Input:  An email message m

Nirulesets R;; (1 <i<N, 1 <j<N,i<))

Np, corresponding thresholds 7,

A default class (in case all classes get equal weight)
Output: An integer indicating the class for the message m

1. Set S =new Array()

2. Fori=1->N {Set S;=0}

3. Fori=1-N-1

4. Forj=i+1-N

5. Set tmp = ScoreRilj(m) +T;;—1

6. Set Si = Si + tmp, S] = S] - tmp

7. Set equalCheck = true, class =1, max =S,

8. Fori=2-N

9. If S; # S;_1 then { Set equalCheck = false }
10. If S; > max then { Set class =i, max = §; }

11. Return (equalCheck ? defaultClass : class)

Fig. 4. The algorithm for OVO-MS prediction model.

OVO-MV predicts the class similarly to OVO-MS. The only difference is that OVO-
MYV counts the votes from classifiers instead of adding up their scores (see Fig. 5).

A binary classifier gives a score to indicate its level of confidence. OVO-MC selects
the class that receives the highest confidence from any classifier (Fig. 6).
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Input:  An email message m

Nrrulesets R;; (I <i<N, 1 <j<N,i<})

Ny corresponding thresholds 7,

A default class (in case all classes get equal vote)
Output: An integer indicating the class for the message m

1. Set S =new Array(), max =1, class = defaultClass
2. Fori=1->N{SetS; =0}

3. Fori=1-N-1

4 Forj=i+1->N

5. If ScoreRiJ (m) +T;; = 1then

6 Set Si S Si +1

7 Else

9. Fori=1->N

10. If S; > max then { Set class =i, max = §; }

11. Return (class)

Fig. 5. The algorithm for OVO-MV prediction model.

Input:  An email message m

NrrulesetsR;; (I <i<N, I <j<N,i<})

N corresponding thresholds 7;;

A default class (in case all scores are equal)
Output: An integer indicating the class for the message m

1. Set S =new Array()

2. Fori=1->N{SetS; =0}

3 Fori=1-N-1

4. Forj=i+1->N

5. Set tmp = Scoreg, (m)+T;;—1
6 If tmp > S; then

7 Set §; =tmp

8 ElseIf 1 — tmp > S; then

9 Set §;=1—tmp

10. Set equalCheck = true, class =1, max = §;

11. Fori=2->N

12. If S; # S;_1 then { Set equalCheck = false }
13. If S; > max then { Set class =i, max =S; }
14. Return (equalCheck ? defaultClass : class)

Fig. 6. The algorithm for OVO-MC prediction model.

3.3 DAG (Directed Acyclic Graph)

Similar to OVO, DAG requires a binary classifier for each pair of different classes.
However, DAG reduces the number of classifiers invoked in the prediction phase to (N —
1) by making use of a binary decision tree. Ny classifiers are arranged in the order given in



168 H.-N. Thanh et al.

Fig. 7. At each level, the prediction process follows either the left or right branch from the
current node depending on the outcome of the classifier at that node.
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Fig. 7. The binary decision tree for the DAG model.

To apply DAG for the user action prediction problem, we repeat the rule creation
part of OVO to build N rulesets. After that, we apply the algorithm described in Fig. 8
for prediction.

Input:  An email message m
Nrrulesets R;; (I <i<N, 1 <j<N,i<}))
Ny corresponding thresholds 7;;
Output: An integer indicating the class for the message m
. Seti=1,j=N, class=0
2. Whilei <jdo

3. If ScoreRl,’j(m) > T;; then
4 Set j=j—1, class=1i
5 Else

6. Seti=i+1, class=j
7. Return (class)

Fig. 8. The prediction algorithm for DAG.

4 Experiments

4.1 Dataset

Our dataset consists of 1408 emails in both English and Vietnamese collected from a
personal mailbox. For this same set, 3 different sets of labels are collected. The first label
set is directly extracted from the email owner’s real data. Two more sets of label are
done independently by 2 volunteers. The numbers of emails labeled by 3 users are shown
in Table 1.

4.2 Experiment 1

This experiment is conducted to compare 5 multiclass classification models used in our
study: OVA, OVO-MS, OVO-MV, OVO-MC and DAG. The authors used 2 measures
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Table 1. Number of emails labeled by 3 different users.

User Reply Read Delete Total
1 183 704 335 1408
2 316 504 402 1408
3 270 402 550 1408

for evaluation: Accuracy and Delete FPR (False Positive Rate, also called “Fall-out™).
Accuracy is a common measure used to evaluate multiclass classifiers [2, 15]. In the
email user action prediction problem, marking a READ or REPLY email as DELETE
is obviously more serious than marking a DELETE email as READ or REPLY. There-
fore, the authors decided to include the FPR measure for the DELETE class to more
accurately evaluate the methods. Regarding the user action prediction problem, FPR for
DELETE can be interpreted as “How many important messages are mistakenly classified
as DELETE?”. Equation (3) shows the formula for Accuracy and Eq. (4) illustrates the
FPR measure.

#of correct predictions

Accuracy =
Y total # of tests

3)

FPR = false positives

“)

false positives + true negatives

e false positives: the number of REPLY and READ messages marked as DELETE.
e true negatives: the remaining number of REPLY and READ messages.

From the test results (see Table 2), OVA has the highest overall Accuracy but also
the highest FPR. OVO-MC produces lowest FPR but has poor Accuracy. DAG seems
to be the most balanced model with high Accuracy and reasonably low FPR.

Table 2. Accuracy and Delete FPR measured from testing with 5 different methods on 3 users.
Shown values are 10-fold cross validation average, represented in percentage (%).

User |OVA OVO-MS OVO-MV OVO-MC DAG

Acc. FPR Acc. FPR Acc. FPR Acc. FPR Acc. FPR
85.04 | 236 | 78.80 | 244 | 75.14 | 2.21 70.18 | 0.51 82.82 | 0.88
69.96 | 6.40 69.39 | 4.78 65.25 | 4.27 58.64 | 1.47 70.03 | 2.28
3 72.80 | 7.09 | 72.56 | 4.31 65.11 | 4.31 54.74 | 1.48 66.54 | 2.01

4.3 Experiment 2

This experiment is done to see if a user’s rulesets can be effectively applied to other
users. We get the rulesets from user 1 for the test because it gives the best results. These
rulesets are tested on user 2 and user 3’s data. In this experiment, only the Accuracy
measure is used (Table 3).
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Table 3. Accuracy measured from using user #1’s rulesets to test against the other users’ test
data. Shown values are 10-fold cross validation average, represented in percentage (%).

User OVA OVO-MS |OVO-MV |OVO-MC |DAG
1 85.04 78.86 75.14 70.18 82.82
2 63.60 60.49 56.98 55.03 61.08
3 49.72 47.98 47.21 44.67 47.40

Accuracy is decreased dramatically in all 5 methods. This means the rulesets built
for a user are personalized and it is not feasible for other users to use those rulesets.

5 Conclusion

In this paper, we proposed a method to predict user action on email using SpamAssassin.
From our experiments, a few conclusions can be made. Firstly, among five prediction
models that we studied, DAG has the highest overall performance. Second, the rate of
false positives for the Delete action is still not practical. We should attempt to repeat the
experiments using different parameters to reduce Delete FPR. Finally, our new method
is intended for personal email data and experiment result has proven so. For future
studies, we would like to consider experimenting on a large dataset and apply more
features besides email content.
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