
An ORM Based Context Model
for Context-Aware Computing

Annet Nishantha Anton Yogarajah, Shiluka Raveen Dharmasena,
Gobinath Loganathan(B), Srinath Perera,

Vishnuvathsasarma Balachandrasarma, and Malaka Walpola

Department of Computer Science and Engineering,
University of Moratuwa, Moratuwa, Sri Lanka

slgobinath@gmail.com

Abstract. Context-aware applications are the future of modern smart-
phones. Now we have mobile devices with enough sensing and process-
ing capabilities but combining them and developing a context-aware
application for mobile devices is still a challenging task for developers.
Context-aware middleware support is a solution to reduce the complex-
ity in developing context-aware applications. Context modeling is one of
the key requirement for a successful context-aware middleware for con-
text representation and reasoning. This paper presents a new Object-
Role Modeling (ORM) based context model which uses the advantage
of modern graph databases and overcomes the problems associated with
previous context models including their lack of context reasoning ability
and poor spatial and temporal context modeling support.

Keywords: Context modeling · Context reasoning · Context aware-
ness · Context-aware computing · Pervasive computing · Object-role
modeling

1 Introduction

The most profound technologies are those that disappear [1]. In today’s world,
smartphones become an inevitable requirement for people to capture their sur-
rounding, listen to music, watch videos, read email, access social media, chat
with friends and even more. Here, a single device has access to various contex-
tual information of its owner and others who share their information through
the network which is connecting all the smartphones. The numerous sensors
packed in modern smartphones let them track user’s activities without inter-
rupting the user. For example, my phone knows where I am and what I am doing
right now to a certain extend without my concern. This seamless interaction of
smartphones makes them the suitable candidate for context-aware computing.
Context-awareness is the ability of a software to adapt according to the location
of use, the collection of nearby people, hosts, and accessible devices, as well as

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

P. Cong Vinh et al. (Eds.): ICCASA 2016, LNICST 193, pp. 132–141, 2017.

DOI: 10.1007/978-3-319-56357-2 14



An ORM Based Context Model for Context-Aware Computing 133

to changes to such things over time [2]. Context is any information that can
be used to characterize the situation of an entity. An entity is a person, place,
or object that is considered relevant to the interaction between a user and an
application, including the user and applications themselves [3].

However, still developing a context-aware application is a challenge for mobile
application developers because implementing a context-aware system requires
addressing many issues: (1) How does the system represent context internally?
(2) How frequently does the system need to consult contextual information?
What is the overhead of considering context? (3) What are the minimal services
that an environment must provide to make context awareness feasible? (4) What
are the relative merits of different location-sensing technologies? [4].

In this paper, we address the first issue and present an ORM context model
using Neo4j graph database to support context modeling and reasoning as the
solution. Our model represents the contextual information of people using nodes
and links in a graph. The underlying database engine is used to store and process
the contexts. This paper is organized as follows. Related work is discussed in
Sect. 2. An introduction to Neo4j database and why we have selected it are
described in Sect. 3. We discuss our context model in Sect. 4 and its context
reasoning ability in Sect. 5. Section 6 describes the evaluation and results followed
by the conclusion and future work in Sect. 7.

2 Related Work

There are remarkable researches conducted on context modeling and reasoning
in middlewares. In this section, we analyze the major modeling techniques which
were successfully adapted to general context modeling and the most successful
implementation of each type.

Ontology-oriented modeling : This modeling is used by most of the existing mid-
dlewares because of its expressiveness and reasoning support. Dejene Ejigu et al.
[5] developed a multi-domain ontology based reusable model. Comprehensive
Structured Context Profiles (CSCP) was developed based on Resource Descrip-
tion Framework (RDF) as an improved representation technique [6]. SOCAM
middleware uses the ontology to represent generic contexts along with the tem-
poral changes and quality of contexts [7]. Dynamic spatial ontology was devel-
oped to represent snapshots of the geographical data and to support spatial
queries [8]. Frederico T. Fonseca et al. [9] proposed ontology-based geographical
knowledge system which can be developed using partial data.

Graphical modeling : Graphical modeling is used to represent the contexts as a
conceptual model. Unified Modeling Language (UML) and ORM are the two
major techniques used to represent the contexts. ContextUML, a UML-based
language for model-driven context-aware services was proposed by Quan Z.
Sheng et al. [10]. Henricksen et al. proposed a graphical context model which
supports context classification, quality of contexts and temporal characteristics
of contexts [11]. Their model uses timestamps to represent temporal contexts
and additional relationships to represent the quality of contexts.



134 A.N. Anton Yogarajah et al.

However, none of these models have proposed a native spatial model or a
temporal model to represent history of events. In this paper, we present our
object-role model which can be seen as an extended model of Henricksen’s pro-
posal. Our model overcomes the spatial and temporal modeling issues of existing
models with alternative approaches.

3 Neo4j

Neo4j [12] is an open source NoSQL graph database with an expressive query
language called Cypher query. Cypher query is an SQL-inspired language for
describing patterns in graphs visually using an ASCII-art syntax [13]. Our model
is built on top of Neo4j 2.3.0 and all the queries given in this paper follow the
Neo4j 2.3.0 Cypher query syntax. Even though the model is built on Neo4j, it
can be deployed on top of any graph databases with suitable changes in low level
CRUD operations.

4 An ORM-Based Model

4.1 Design Considerations

A context-aware middleware must have the capability of processing, modeling,
storing and distributing the context among various context-aware applications
which are interested in a specific context. The context can be any informa-
tion about relationships between users, physical objects, and applications. The
interrelation of contexts helps to derive some high-level contexts which are not
directly available from the raw sensors. For example, if Alice is in her office and
Bob’s mobile is connected to Alice’s mobile via Bluetooth, we can conclude that
Bob is closed to Alice. There are exceptions of course, for example, if Alice knows
Bob, we cannot conclude that Bob knows Alice. Therefore, domain-specific rules
on interrelationships of contexts are required to derive more contexts using exist-
ing knowledge.

Some contexts are inconsistent while some are not. For example, “Alice knows
Bob” this relationship never changes once created, but “Alice is in city center” is
not consistent with time. History of contexts which are changing with time must
be available for some interested applications. For example, history of visited
locations may be required for a tour guide application to decide on best places
to visit. Again, a domain-specific rule is necessary on deciding which contexts to
be stored with their past history.

4.2 Modeling Contexts

Our model is user oriented so the contexts are represented as the relationships
of a user with other users, physical objects, and the environment. The wide
range of contexts is classified into three major categories: social context, spatial
context, and temporal context. Social context is the relationship of a user with



An ORM Based Context Model for Context-Aware Computing 135

other people. Social context also includes the personal contexts like home loca-
tion, work location, and user’s device related information. Spatial context is the
relationship of a user with a location and the nearby physical objects. Temporal
context is the context changing with time and its history is required to derive
some other useful information. For example, the location data of the user which
are periodically collected and maintained as a temporal context can be used to
find the traveling pattern of the user and suggest him/her to adjust it based on
real-time traffic data and weather forecast.

All these three categories can be further classified into direct context and
indirect context based on the means by which the context is obtained. Direct
context is collected using the sensors connected to the middleware. This type
of contexts can be stored in the model without complex processing. Indirect
context is derived from direct context through aggregation and reasoning using
a processing engine. Indirect contexts can be stored in the context model or
immediately sent to the interested applications and discarded in the middleware
depending on the context type and its validity period.

All the contexts are modeled using ORM model because it is more expressive
to represent the contexts in various dimensions and modern graph databases
provide powerful processing support.

Fig. 1. A partial ORM model representing the contexts of Alice (Alice knows Bob but
Bob doesn’t know Alice. Alice and Charlie know each other. Alice has a Device. On
20-04-2016 at 10.15, Alice was at 6.89366, 79.85530 location)

The Nodes: Person, Device, Environment, Location, Year, Month, Day, Hour,
Minute and WiFi represent the real world entities as their name suggest. Nodes
can have certain properties depending on their class. For example, Person node
has a name, email address and user id and Device node has manufacturer
name, device id, operating system version, Wi-Fi MAC address, Bluetooth MAC



136 A.N. Anton Yogarajah et al.

address, last seen time, current battery level and a list of available sensors.
The links: KNOWS, HAS, ACTIVE DEVICE, ENVIRONMENT, LOCATION,
LOCATED AT, CHILD, NEXT, etc. represent the relationship between entities.
All the links are directed links but the direction can be ignored during context
reasoning depending on the domain and requirement. If a two-way direction is
explicitly required, two links have to be used to achieve it. For example in Fig. 1,
Alice knows Bob but Bob does not know Alice is represented by a directional
link from Alice to Bob. Alice and Charlie know each other is represented by
two directional links; one from Alice to Charlie and the other from Charlie to
Alice. Links also can have properties based on their class. For example, the links
ENVIRONMENT and LOCATION have a property ‘accuracy’ which represents
the quality of the context. All devices which are with the user at the moment
are linked using ACTIVE DEVICE relationship. This link is useful to resolve
contradicting contextual information reported by two devices. For example, if
Alice has two phones and both are sending two different locations, our model
stores the location reported by the ACTIVE DEVICE only. If two active devices
are reporting different locations, one with the highest accuracy will be stored in
the model.

4.3 Modeling Spatial Contexts

R-Tree is a balanced tree data structure to store and process spatial objects
in databases. It allows mapping geographical coordinates and polygons with
high precision and acceptable performance. R-Tree does not guarantee a good
worst-case performance but it works well on average cases for most kinds of
data [14]. We use an existing R-Tree implementation for Neo4j database [15]
which supports spatial queries like Contain, Cover, Covered By, Cross, Disjoint,
Intersect, Intersect Window, Overlap, Touch, Within, and Within Distance. The
R-Tree layer is a combination of geometries used to represent a collection of
geometric objects with the same attribute. Our current model contains only
one layer to represent the GPS coordinates of locations. It can be extended to
include multiple layers with various geographical information. The layer has a
bounding box and a metadata node to store the number of nodes connected to
that layer and the range of the stored nodes. An ID is generated for Locations
using approximated latitude and longitude values. The level of approximation is
determined by the level of precision required by the application. Current model
approximates the coordinates to 5 digits which provides a precision of 1.1 m
[16]. Before storing a location, our model searches for an existing location with
the same ID and if it is available, rather than creating a new Location node,
existing node will be shared among the users in order to reduce the number
of nodes in the model. The LOCATION link contains the accuracy reported
by the GPS sensor and the exact latitude and longitude sent by the device.
LOCATION link also contains an optional property ‘provider’ which stores the
location provider used to derive the location. Currently, there are three location
providers available in Android operating system which are GPS, network and



An ORM Based Context Model for Context-Aware Computing 137

passive. Location provider and the accuracy of the location can be used to define
the quality of the context later in context reasoning process.

Nearby Wi-Fi terminals reported by devices are also associated with the
location. The relationship ‘LOCATED AT’ between Wi-Fi node and the loca-
tion node contains a property named ‘strength’. If a Wi-Fi terminal which is
already available in the model, is available in another location with more than
500 m distance, that Wi-Fi terminal is considered as a portable terminal and the
‘LOCATED AT’ relationship will be deleted. This information can be used to
identify the location of a user with the help of available Wi-Fi networks instead
of using GPS which consumes more power than Wi-Fi (Fig. 2).

Fig. 2. Spatial model

4.4 Modeling Temporal Contexts

Even though modern smartphones synchronize the time with global time, there
can be devices with wrong clock time. When multiple individual devices are send-
ing contextual information to a central server, storing them using the device clock
time will cause to event ordering problem due to the variation in devices time.
As a solution, our model uses the server time to store time sensitive contextual
information, ignoring network delays. The zero network delay assumption leads
to another assumption that the HTTP requests sent by devices reach the server
in the same order. In other words, we assume that if device A sent an event
before device B, the request of device A reached the server before the request of
device B. The time zone of a user is identified using his/her current location and
stored in the TimelineRoot node. When an application requests a time sensitive
contextual information, device local time is calculated using the time zone of the
user and the server. Additional options are provided to override the user’s time
zone if required.

This model represents the time using a tree structure. Each user has a link
to a unique TimelineRoot node. TimelineRoot node has CHILD links to Year
nodes. Each year nodes can have 1–12 CHILD links to Month nodes. Similarly,



138 A.N. Anton Yogarajah et al.

Fig. 3. Temporal model

the tree grows until Minute nodes. Nodes in the same depth have intermediate
links named NEXT which points the next node if available. We stopped with the
precision of minutes because of two reasons. First, the minimum time interval
of mobile sensors to collect and report new data is 5 min if the battery level is
100% because frequent usage of sensors in a mobile device drains the power of
the mobile device. We have ended with 5 min after trial and error experiments
and this interval is dynamically adjusted based on the battery level of the device.
Second, modeling with a precision of seconds leads to too many nodes and links
in the database which needs more memory. The Minute nodes contain an extra
property ‘milliseconds’ which is the number of milliseconds from Java epoch
truncated to that specific minute. The actual instant in milliseconds is stored in
the relationship which connects the Minute node and the context node (Fig. 3).

Since our model supports multiple devices and the precision is up to minutes,
there is a possibility of two devices reporting the same context within a minute.
If there are two different types of contexts reported by two active devices of the
user within a minute, both will be linked to that specific time in this model. If
the context types are same, the one with the highest accuracy is linked to the
time.

5 Context Reasoning

Context reasoning is the process of deriving deduced contexts from raw contexts.
It also provides a solution to resolve context inconsistency and conflict that



An ORM Based Context Model for Context-Aware Computing 139

caused by imperfect sensing [14]. Most of the modern graph databases provide
query support to aggregate data and retrieve the interested information. Since
our model is built on Neo4j, Cypher query of Neo4j is used to process the contexts
and to derive the complex contexts based on the defined rules. Our middleware
uses WSO2 Complex Event Processor [17] along with the database for realtime
context processing. Combination of both CEP and database is used to derive
high level contexts and to improve the quality of contexts as well.

For example, finding the visited locations of Alice from January 1st to April
15th in last five years can be done using the following Neo4j query.

MATCH (n:Person {name: ‘Alice ’}) -[: TIMELINE_ROOT ]->(:
TimelineRoot) -[:CHILD]->(y:Year) -[:CHILD]->(m:Month) -[:
CHILD]->(d:Day) -[:CHILD*]->(: Minute) -[:LOCATION]->(l:
Location) WHERE (y.value >= 2011 AND y.value < 2016)
AND (m.value < 4 OR (m.value = 4 AND d.value <= 30))
RETURN l

6 Evaluation

Five sample data sets were created using 100 to 500 users per sample along with
10 visited locations and 10 environmental conditions per user. Further, each
model contain 100 known relationships among the users. The data sets were
deployed on Neo4j server and tested through REST API of Neo4j. Therefore the
time measured in these tests includes the delay in sending HTTP requests. The
test has been done only for data retrieval because the behaviors of both writing to
the model and reading from the model are identical in our context model. Testing
the read-write performance of underlying database is out of the scope of this
research. As shown in Fig. 4a, our model requires more nodes and relationships
than the models suggested in existing works because of the temporal model we
use. However, it does not heavily impact the overall performance of the model.

Fig. 4. Evaluation results



140 A.N. Anton Yogarajah et al.

Three queries were used to test the performance of the model and the perfor-
mance is compared in Fig. 4b. Query 1 searches for a given person using the user
id to evaluate overall read performance of the model. The performance remains
constant regardless of the number of nodes and the same result is expected
for any entities searched using their indexed properties. Query 2 retrieves the
nearby known people of a given user within a given interval to check the per-
formance of spatial and temporal models. The query was purposefully designed
to first retrieve the nearby locations using the R-Tree implementation and then
search for known people in those locations within the given interval. Therefore
the major impact on the performance is made by the spatial model. The R-Tree
implementation provides more inbuilt features to the model but the performance
is the limiting factor in using the spatial model. Performance decreases with the
number of locations and the average time to retrieve the data is much higher
than the time to retrieve other contextual information. However, the same infor-
mation can be retrieved without using the advantage of the spatial model which
is implemented in Query 3.

The exact information retrieved using the query 2 was retrieved using query
3 in another way. Query 3 starts from the known people and then searches for
their location within the given interval. Once the visited locations were retrieved,
it calculates the euclidean distance between those locations and the given loca-
tion. Those who were within the given distance are returned as nearby known
people. While both query 2 and 3 return the same result, the time taken to exe-
cute the queries significantly varies. As Fig. 4b shows, the performance of query
1 and 3 are quite similar which concludes that the performance of the model
is not impacted by the temporal model we used. The spatial model does not
provides better performance and should not be used if there are any other ways
to retrieve the spatial information.

7 Conclusion

In this paper, we have presented an extensible ORM model to represent and
process contexts with the support of graph database. Our context model repre-
sents social, spatial and temporal contexts along with the quality of contexts.
The underlying database provides storage and also acts as a context processing
engine. We have already used this model in our context-aware middleware Con-
Tra and proved the validity of this model. We are looking at creating multiple
R-Tree layers to represent various geographical information like buildings in one
layer and streets in another layer. We are also focusing on developing this model
as a generic framework which can be deployed on top of any graph databases
with less or no effort.



An ORM Based Context Model for Context-Aware Computing 141

References

1. Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput. Com-
mun. Rev. 3(3), 3–11 (1999)

2. Schilit, B., Adams, N., Want, R.: Context-aware computing applications. In: Pro-
ceedings of the 1994 First Workshop on Mobile Computing Systems and Applica-
tions. WMCSA 1994, pp. 85–90. IEEE Computer Society, Washington, DC (1994)

3. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.)
HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999). doi:10.
1007/3-540-48157-5 29

4. Satyanarayanan, M.: Challenges in implementing a context-aware system. IEEE
Pervasive Comput. 1(3), 2 (2002)

5. Ejigu, D., Scuturici, M., Brunie, L.: An ontology-based approach to context mod-
eling and reasoning in pervasive computing. In: Proceedings of the Fifth IEEE
International Conference on Pervasive Computing and Communications Work-
shops. PERCOMW 2007, pp. 14–19. IEEE Computer Society, Washington, DC
(2007)

6. Held, A., Buchholz, S., Schill, A., Schill, E.: Modeling of context information for
pervasive computing applications (2002)

7. Gu, T., Wang, X.H., Pung, H.K., Zhang, D.Q.: An ontology-based context model
in intelligent environments. In: Proceedings of Communication Networks and Dis-
tributed Systems Modeling and Simulation Conference, pp. 270–275 (2004)

8. Grenon, P., Smith, B.: Snap and span: towards dynamic spatial ontology. Spat.
Cogn. Comput. 4(1), 69–103 (2004)

9. Fonseca, F.T., Egenhofer, M.J.: Ontology-driven geographic information systems.
In: Proceedings of the 7th ACM International Symposium on Advances in Geo-
graphic Information Systems. GIS 1999, pp. 14–19. ACM, New York (1999)

10. Sheng, Q.Z., Benatallah, B.: ContextUML: a UML-based modeling language for
model-driven development of context-aware web services development. In: Proceed-
ings of the International Conference on Mobile Business. ICMB 2005, pp. 206–212.
IEEE Computer Society, Washington, DC (2005)

11. Henricksen, K., Indulska, J., Rakotonirainy, A.: Generating context management
infrastructure from high-level context models. In: 4th International Conference on
Mobile Data Management (MDM) - Industrial Track, pp. 1–6 (2003)

12. Neo4j: The world’s leading graph database. http://neo4j.com. Accessed 07 Feb
2016

13. What is a graph database? A property graph model intro. http://neo4j.com/
developer/graph-database/. Accessed 05 Jan 2016

14. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: Pro-
ceedings of the 1984 ACM SIGMOD International Conference on Management of
Data. SIGMOD 1984, pp. 47–57. ACM, New York (1984)

15. Taverner, C.: Neo4j-contrib/spatial. https://github.com/neo4j-contrib/spatial.
Accessed 05 Jan 2016

16. Hijmans, R.J., Guarino, L., Cruz, M., Rojas, E.: Computer tools for spatial analysis
of plant genetic resources data: 1. DIVA-GIS. Plant Genetic Resources Newsletter,
pp. 15–19 (2001)

17. Complex event processor - WSO2 inc. http://wso2.com/products/complex-event-
processor. Accessed 03 May 2016

http://dx.doi.org/10.1007/3-540-48157-5_29
http://dx.doi.org/10.1007/3-540-48157-5_29
http://neo4j.com
http://neo4j.com/developer/graph-database/
http://neo4j.com/developer/graph-database/
https://github.com/neo4j-contrib/spatial
http://wso2.com/products/complex-event-processor
http://wso2.com/products/complex-event-processor

	An ORM Based Context Model for Context-Aware Computing
	1 Introduction
	2 Related Work
	3 Neo4j
	4 An ORM-Based Model
	4.1 Design Considerations
	4.2 Modeling Contexts
	4.3 Modeling Spatial Contexts
	4.4 Modeling Temporal Contexts

	5 Context Reasoning
	6 Evaluation
	7 Conclusion
	References


