
A New Method to Analyze Graphical User
Interfaces of Android Applications

Hong Anh Le1(B) and Ninh Thuan Truong2

1 Hanoi University of Mining and Geology,
18 Pho Vien, Bac Tu Liem, Hanoi, Vietnam

lehonganh@humg.edu.vn
2 VNU - University of Engineering and Technology,

144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
thuantn@vnu.edu.vn

Abstract. In recent years, the number of Android smartphones increase
dramatically and new applications are added numerously in Google store.
Android developers usually have to deal with the difficulties such as lim-
ited capacity battery, screen design, and limited resources. Among them,
specifying graphical user interfaces (GUI) of an application is one of the
most important issues. This paper presents a new method to analyze
GUI specifications of an Android application. We employ Event-B for-
mal method and its refinement mechanism to formalize the specifications
and to check if the constraints are satisfied. A running example of a Note
application is given to illustrate the proposed method in detail.

Keywords: GUI specification · Event-B · Android applications

1 Introduction

With the rapid development of hardware technologies, smartphones become more
powerful and much cheaper than ten years ago. Smartphones provide many
advanced utilities to users and are in hands of a lot of people around the world.
In the smartphone market, the devices using Android operating system con-
tribute to around 65% in 2016. Currently, Google play store, the biggest market,
contains more than 1.5 billions applications.

In software development process, specifying GUI is one of the most important
step. Specifically, GUI of an mobile application becomes more critical because of
various screen resolutions and limited resources. The developers who are based
on the collection of GUI requirements design the screens and activities of their
components before they actually write the code of the application. The GUI
requirement documents often consist of UI objects and their semantic executions.
One problem arises is that GUI specifications come with informal representa-
tion. Software developers, therefore, might misunderstand or can not realize the
defects of GUI specifications. The earlier these faults are detected, the smaller
cost of development is.
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

P. Cong Vinh et al. (Eds.): ICCASA 2016, LNICST 193, pp. 111–120, 2017.

DOI: 10.1007/978-3-319-56357-2 12



112 H.A. Le and N.T. Truong

Formal methods have been used for describing, validating, and verifying GUI
specifications of software systems. Authors [10] proposed a formal language,
Fruit (Functional Reactive User Interface Toolkit), to write concise specifica-
tion of GUI programs. Some model-based approaches [4,12,13] using different
kinds of existing methods, e.g. Petri Nets, Z, Spec#, to formally describe GUI
requirements. Mobile developers design GUI with components provided in the
rich Android GUI framework. These existing methods are not specified enough
for analyzing Android GUI designs. Hence, formally checking the design to find
defects is an emerging issue and is needed to be more investigated.

This paper present a new method which employs Event-B [2] and its refine-
ment mechanism to model and verify Android GUI requirements. Event-B, which
uses set theory as modeling notations and mathematical proofs, is suitable for
system modeling. The Event-B refinement allows to develop the system from
abstract level to more concrete and precise levels. Moreover, we can make use of
many platforms supported for Event-B such as RODIN to specify and to prove
desired properties either automatically or iteratively. After verification phase
at design level, EventB2Java or EventB2C can be used to generate executable
programs from Event-B models. The contributions of the paper are (1) presents
a formalization of Android GUI requirements in Event-B notations, (2) pro-
poses refinement-based approach of GUI modeling which is suitable for mobile
software development, and (3) shows that desired properties can be verified in
the RODIN and the resulted Event-B models can be translated into executable
implementations.

The rest of the paper is organized as follows. Section 2 provides a brief intro-
duction of GUI design, Event-B, and the RODIN platform. The main work of
the paper is presented in Sect. 3. In the next section, we apply the proposed
method to analyze a Note application. Section 5 outlines some related work.
Finally, Sect. 6 concludes the paper and gives some research directions.

2 Background

In this section, we outline some principles of GUI design in software system as
well as in Android smartphone. After that, Event-B and its support tool RODIN
is sketched.

2.1 GUI Design

The user interface is one of the most important parts of a software system.
It defines how users interact with the system, e.g. using hands, keyboards, and
voice, and how the system delivers the results to users, e.g. via screens and voice.
Designing GUI is a subset of Human-Computer interaction studies.

GUI of Android applications contains a collection of graphical elements, e.g.,
Layout, Text, Button, etc., provided by the framework. Android framework pro-
vides several ways to intercept events from users’ interaction with View or Activ-
ity class. An Activity provides a window screen for users to interact with the



A New Method to Analyze Graphical User Interfaces 113

application. An application usually contains multiple activities in which a main
activity is defined for the first appeared screen when lunching the application.
An activity has four essential states such as running (the activity is in the
foreground), paused (it has lost focus but still visible), stopped (the activity
retains all its data but is invisible), and destroyed (the activity is killed from the
memory).

2.2 Event-B

Event-B is a kind of formal method which combines mathematical techniques
from the set theory and the first order logic. It is an evolution of B-method.
Event-B is suitable for modeling large and reactive systems. The basic structure
of an Event B model consists of a MACHINE and a CONTEXT.

Contexts form the static part of the model while machines form the dynamic
part. Contexts can extend (or be extended by) other context and are referred
(seen) by machines. Being considered as the static part of the model, the context
is used to store, for instance, the types and constants used during the devel-
opment of the system. The machine contains the dynamic part of the model.
It describes the system state, the operations to interact with the environment
together with the properties, conditions and constraints on the model. A Machine
is defined by a set of clauses which is able to refine another Machine. We briefly
introduce main concepts of an machine as follows:

– Variables: represents the state variables of the model of the specification.
– Invariants: describes by first order logic expressions, the properties of the

attributes defined in the variable clauses. Typing information, functional and
safety properties are described in this clause. These properties are true in the
whole model. Invariants need to be preserved by events clauses.

– Events: E(v) present transitions between states. Each event has the form evt =
any x where G(x, v) then A(x, v, v′) end, where x are local variables of the
event, G(x, v) is a guard condition and A(x, v, v′) is an action. An event is
enabled when its guard condition is satisfied. The event action consists of
one or more assignments. We have three kinds of assignments for expressing
the actions associated with an event: (1) a deterministic multiple assignment
(v := E(t, v)), (2) an empty assignment (skip), or (3) a non-deterministic
multiple assignment (v : |P (t, v, x′)).

A Context consists of the following items:

– Sets: describes a set of abstract and enumerated types.
– Constants: represents the constants used by the model.
– Axioms: describes with first order logic expressions, the properties of the

attributes defined in the CONSTANTS clause. Types and constraints are
described in this clause.

To deal with complexity in modeling systems, Event-B provides a refine-
ment mechanism that allows us to build the system gradually by adding more



114 H.A. Le and N.T. Truong

details to get a more precise model. A concrete Event-B machine can refine
at most one abstract machine. A refined machine usually has more variables
than its abstraction as we have new variables to represent more details of the
model. In superposition refinement, the abstract variables are retained in the
concrete machine, with possibly some additional variables. In data refinement,
the abstract variables v are replaced by concrete ones w. Subsequently, the con-
nections between them are represented by the relationship between v and w, i.e.
gluing invariants J(v, w).

2.3 RODIN

Rodin, an extension of the Eclipse platform, allows to create Event-B models
with an editor. It also automatically generates the proof obligations of a model
that can be discharged automatically or interactively. The architecture of the
tool is illustrated in Fig. 1. Event-B UI provides users interfaces to edit Event-B
models. Event-B Core has three components: static checker (checking the syntax
of Event-B models), the proof obligation generator (producing simplified proof
obligations that make them easier to discharge automatically), and the proof
obligation manager (managing proof obligations and the associated proofs). The
Rodin Core consists of two components: the Rodin repository (managing per-
sistence of data elements) and the Rodin builder (scheduling jobs depending on
changes made to files in the Rodin repository).

Fig. 1. Rodin tool architecture

3 Refinement-Based Approach to Analyzing
Android GUI Designs

In this section, we first introduce the overall picture of our proposed method.
After that, The formalization of Android GUI elements is given. Following this,
we show how to model this formalization in Event-B notations and verify the
desired properties with RODIN platform.



A New Method to Analyze Graphical User Interfaces 115

3.1 The Approach Overview

In the early phase of software development process, stakeholders often work
together to initially define the GUI of the software. They then can add more pre-
cise and detail descriptions to GUI designs of the application. GUI design specifi-
cations of a general software system as well as Android applications describe the
structure of each screen which is composed of UI elements and explain expected
results or logic flows when users interact with these elements. The proposed
approach consists of several steps depicted in Fig. 2.

Fig. 2. The approach overview

The first steps in the proposed method is formalizing informal abstract GUI
requirements and encoding them in Event-B notations. Along with development
iterative phases, GUI designs are being more precise and detailed. These require-
ments, based on the refinement mechanism, are added to create a concrete Event-
B one. The archived Event-B models in each steps can be verified via RODIN
platform and its support plug-ins.

3.2 Formalization of Android GUI Elements

An Android application is different from an Android service as it has the GUI
for users’ interactions. Its GUI design describe each screen of the application
which consists of UI elements, events, and corresponding actions. We define an
application P as a 3-tuple 〈W,S,C〉, where



116 H.A. Le and N.T. Truong

– W : a set of screens which are provided by Activity class in the framework.
– S: denotes the states of each screen including three essential ones of an Android

activity.
– C: states the global constraints between screens.

Each screen composed of a collection of UI objects, events, and the corre-
sponding actions. A screen s ∈ S is formally defined as a 3-tuple 〈Go,Ev,Ac〉,
where

– Go: denotes a set of graphical objects used in the screen. An object o ∈ Go =
〈Pr, St〉, where Pr and St represents its dynamic properties and state values
respectively.

– Ev: states the intercept events when users interact with the screen.
– Ac: represents the consequences after the corresponding events happen.

Following the above definitions, we propose some rules to encode GUI require-
ments in Event-B notation as follows.

1. A screen s is mapped to an Event-B machine M .
2. Dynamic properties Pr of an UI object o ∈ Go are translated to Event-B

variables.
3. State values St of an UI object o ∈ Go are translated to Event-B sets, con-

stants, or axioms.
4. Events Ev are mapped naturally to events of the machine M .
5. Actions Ac associated with an event e ∈ Ev are translated to assignments in

THEN clauses of e.

3.3 Refinement for Analyzing GUI Specifications

In Sect. 3.2, we formalize the individual screen of an Android application with
Event-B notations. One issue raised in verifying GUI specification is that analyz-
ing multiple screens and verify the constraints between them. For simplicity, let
assume that the application starts from the main activity, then goes into several
branches. We continue to exploit Event-B refinement to formalize these (Fig. 3).

Following the rules presented in Sect. 3.2, we start by translating the main
activity into the first abstract Event-B model. Then, we can visit other n screens
from it. These, using the main activity’s states, are modeled by refining the first
abstract model. The remaining screens are modeled analogously.

4 A Running Example: Note Application

4.1 GUI Specifications

Note is a king of basic and popular Android applications providing users func-
tionalities to create and view their personal memorial notes. It basically con-
sists of four activities including MainActivity, CreateActivity, EditActivity, and



A New Method to Analyze Graphical User Interfaces 117

Fig. 3. Refinement for modeling UI designs

ViewActivity where MainActivity is the start-up screen. From the main screen,
users can visit CreateActivity, EditActivity, or ViewActivity screens.

The CreateActivity screen has two events which are attached to two buttons
such as Save and Cancel. The former allows users to save the note and go back
to the previous screen. When users press the latter, they will ignore the current
note and go back to the previous screen. The EditActivity screen acts in the
similar way. The ViewActivity has only Close button to return the previous
screen.

The application has to meet the requirement that only one of three screens
EditActivity, ViewActivity, and CreateActivity activates at the same time. If
MainActivity is active, then all other screens are destroyed.

4.2 Modeling and Verifying GUI Designs

We apply the proposed refinement-based approach to modeling the GUI specifi-
cations of Note application as follows.

Step 1. Initial model
The main activity is modeled as a context C 0 containing a set S represent-
ing four essential states of an Android activity and an abstract machine M 0
which sees C 0 and has four BOOL variables main, createAtive, editActive,
and viewActive representing the active status of four activities.



118 H.A. Le and N.T. Truong

Step 2. Refinement
CreateActivity is added into the design. This activity is modeled by a refined
machine M CREATE which refines machine M MAIN and has a more variable
memo and two events Save and Cancel.

Step 3. Refinement
Similarly, EditActivity is formalized by a refined machine M EDIT which refines
machine M MAIN and has a more variable memo and two events Save and
Cancel.

Step 4. Refinement
ViewActivity is modeled by a refined machine M VIEW which refines machine
M MAIN and has a more variable memo and one event Cancel.

The paradigm of the translated model is depicted in Fig. 4.

Fig. 4. Structure of the target model

The behavior constraints are formalized as two invariants:
INV 1 : (editState = active =⇒ ¬(viewState = active ∨ createsState =

active) ∧(viewState = active =⇒ ¬(editState = active ∨ createsState =
active)∧(createState = active =⇒ ¬(viewState = active∨editState = active)
and

INV 2 : mainState = active =⇒ viewState = destroyed ∧ createState =
destroyed ∧ editState = destroyed

Verification results are depicted in Table 1. One discharged PO of M View
shows that in the screen ViewActivity, if users click Save button, it leads to the
violation of the behavior constraint1.

1 The RODIN archive can be downloaded at http://125.212.233.56/NoteExample.zip.

http://125.212.233.56/NoteExample.zip


A New Method to Analyze Graphical User Interfaces 119

Table 1. PO obligations statistics in RODIN

Machine Total POs Auto Manual Discharged

M Main 19 19 0 0

M Create 14 14 0 0

M Edit 14 14 0 0

M View 14 13 0 1

5 Related Work

GUI modeling is an emerging issue extracting many researchers. Many papers
have been dedicated to formal modeling and checking UI specifications with dif-
ferent techniques. Bowen [5] provides formal notations of X11 programs’ UI based
on Z language. The author precisely specifies operations such as create, manip-
ulate, and destroy windows to avoid ambiguity UI requirements. This method,
however, does not provide a way to verify the desired properties. Clement, in [8],
adopts VDM and its proof obligations to develop Window interfaces. The app-
roach also makes use of VDM support tools to generate the implementation of
the system in Prolog language. The difference between this paper and their paper
is that we can generate the executable program in several languages (e.g., Java,
C++) from the target Event-B model. Palanque et al. present a formalism called
Interactive Cooperative Objects, which is based on high-level Petri nets. Their
proposed approach is suitable for discrete interaction between users and appli-
cation. It can check several properties of interface requirements such as absence
of a deadlock, integrity constraints, etc. Judy Bowen et al., in [4], integrate both
user-centric design methods and Z formal method to propose a formal model
of UI. The works presented in [3,9] also use Event-B proof obligations as the
foundation to validate HCI requirements. These works need a hypothesis that
the requirements are described in Concur Task Tree (CTT) models.

The common issue of these papers, in our opinions, is that they are unspecific
enough to apply for Android applications in which dialogs inherit Acivity class.
One of advantages of our method is that we can apply the tool, in [7], to generate
Android codes from Event-B models.

6 Conclusions and Future Work

GUI requirement analysis plays an important role in mobile application develop-
ment. Many work has been dedicated to GUI verification at early phase to reduce
the cost. In this paper, we propose a new refinement-based method for modeling
and verifying Android GUI designs. The defects of the design can be realized at
any refinement step. Desired properties can be checked based on the generated
proof obligations and almost be proved automatically. One limitation of this
method is that Event-B primitives data type are not rich enough to describe
all Android UI elements. This, however, can be overcome by incorporating with



120 H.A. Le and N.T. Truong

Theory Plugin [6] to define more data structures. We also intend to expand this
work with analyzing concurrency issues of Android application interfaces.

Acknowledgments. This work is partly supported by the project no. 102.03–2014.40
granted by Vietnam National Foundation for Science and Technology Development
(Nafosted).

References

1. Event-B and the Rodin platform (2012). http://www.event-b.org
2. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering, 1st edn.

Cambridge University Press, New York (2010)
3. Ait-Ameur, Y., Baron, M.: Formal and experimental validation approaches in hci

systems design based on a shared event b model. Int. J. Softw. Tools Technol.
Transf. 8(6), 547–563 (2006)

4. Bowen, J., Reeves, S.: Formal models for informal GUI designs. Electron. Notes
Theor. Comput. Sci. 183, 57–72 (2007)

5. Bowen, J.P.: X: why z? Comput. Graph. Forum 11, 221–234 (1990)
6. Butler, M., Maamria, I.: Practical theory extension in event-b. In: Liu, Z.,

Woodcock, J., Zhu, H. (eds.) Theories of Programming and Formal Meth-
ods. LNCS, vol. 8051, pp. 67–81. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39698-4 5

7. Cataño, N., Rivera, V.: EventB2Java: a code generator for event-b. In:
Rayadurgam, S., Tkachuk, O. (eds.) NFM 2016. LNCS, vol. 9690, pp. 166–171.
Springer, Cham (2016). doi:10.1007/978-3-319-40648-0 13

8. Clement, T.: The formal development of a windows interface. In: Proceedings of
the 3rd BCS-FACS Conference on Northern Formal Methods (3FACS 1998), p. 6,
Swinton, UK. British Computer Society (1998)

9. Cortier, A., d’Ausbourg, B., Aı̈t-Ameur, Y.: Formal validation of java/swing user
interfaces with the event b method. In: Jacko, J.A. (ed.) HCI 2007. LNCS, vol. 4550,
pp. 1062–1071. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73105-4 116

10. Courtney, A.A.: Modeling user interfaces in a functional language. Ph.D. thesis,
New Haven, CT, USA. AAI3125177 (2004)

11. Le, H.A., Nakajima, S., Truong, N.T.: Formal analysis of imprecise system require-
ments with event-b. SpringerPlus 5(1), 1000 (2016)

12. Palanque, P., Paternó, F. (eds.): Formal Methods in Human-Computer Interaction,
1st edn. Springer, New York (1998)

13. Palanque, P.A., Bastide, R.: Petri net based design of user-driven interfaces using
the interactive cooperative objects formalism. In: Paternó, F. (ed.) Interactive
Systems: Design, Specification, and Verification. Focus on Computer Graphics:
Tutorials and Perspectives in Computer Graphics. Springer, Heidelberg (1995)

http://www.event-b.org
http://dx.doi.org/10.1007/978-3-642-39698-4_5
http://dx.doi.org/10.1007/978-3-642-39698-4_5
http://dx.doi.org/10.1007/978-3-319-40648-0_13
http://dx.doi.org/10.1007/978-3-540-73105-4_116

	A New Method to Analyze Graphical User Interfaces of Android Applications
	1 Introduction
	2 Background
	2.1 GUI Design
	2.2 Event-B
	2.3 RODIN

	3 Refinement-Based Approach to Analyzing Android GUI Designs
	3.1 The Approach Overview
	3.2 Formalization of Android GUI Elements
	3.3 Refinement for Analyzing GUI Specifications

	4 A Running Example: Note Application
	4.1 GUI Specifications
	4.2 Modeling and Verifying GUI Designs

	5 Related Work
	6 Conclusions and Future Work
	References


