
An Approach to Analyzing Execution
Preservation in Java Program Refactoring

Thi-Huong Dao1, Hong Anh Le2(B), and Ninh Thuan Truong1

1 VNU, University of Engineering and Technology, Hanoi, Vietnam
{huongdt.di12,thuantn}@vnu.edu.vn

2 Hanoi University of Mining and Geology, Hanoi, Vietnam
lehonganh@humg.edu.vn

Abstract. Code refactoring is a technique that improves the existing
code in order to make software easier to understand and more exten-
sible without changing the external behavior. Software design patterns,
programming language independent reusable solutions to comment prob-
lems, are well-known in Java communities. On one hand, the refactoring
using design patterns brings many benefits such as cost saving, flexibili-
ties, and maintainability. On the other hand, it potentially causes bugs or
changes execution behavior of Java programs. This paper proposes a new
approach to checking behavior preservation properties of Java programs
after applying design patterns. We present new definitions to compute
pre/post conditions of program behavior. In the next step, the paper
makes use of Java Modeling Language (JML) to represent and check
if the refactored program neglects to preserve the external behavior. A
motivating example of Adaptive Road Traffic Control (ARTC) is given
to illustrate the approach in detail.

Keywords: Refactoring · Design patterns · Consistency · ARTC

1 Introduction

Software development is an elaborated and time-considerable process involving
many steps in which maintenance phase plays an important role. This phase
takes a high cost if the designs or codes are poor that makes software difficult
to understand. As a consequence, developers find hard to maintain, modify, or
create new features.

Software refactoring, originally introduced by Opdyke in his dissertation [10],
is techniques, which are widely adopted for improving existing designs or codes
without altering the external behavior. It includes a series of small transfor-
mations restructuring the software system. The software is expected to execute
correctly as same as it does before refactoring.

During refactoring process, if developers realize smell codes, they will find
solutions to improve these with a new structure. Design patterns [6] are general
repeatable reusable solution to a commonly occurring problem within a given

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

P. Cong Vinh et al. (Eds.): ICCASA 2016, LNICST 193, pp. 101–110, 2017.

DOI: 10.1007/978-3-319-56357-2 11



102 T.-H. Dao et al.

context in software design. It is a description or template for how to solve a
problem that can be used in many different situations.

Refactoring to Patterns is the process of improving the design of existing code
with patterns, the classic solutions to recurring design problems. Refactoring to
Patterns suggests that using patterns to improve an existing design is better
than using patterns early in a new design. We should improve designs with
patterns by applying sequences of low-level design transformations, known as
refactorings. Patterns are language independent, they have been broadly used in
many programming languages including Java.

However, a big problem with design patterns in refactoring process is that we
can not assure the execution behavior of the original program and its refactored
one is consistent. It means that some execution may not be preserved in new one.
Several approaches have been proposed to checking the consistency between pro-
grams using graph transformation techniques [2,12], and XML metadata inter-
change [5]. In this paper, we propose an approach to checking the consistency
of execution behavior of Java programs before/after refactoring. The main con-
tributions of the paper are (1) defines how to compute pre/post conditions of
software execution behavior (i.e. program scenario), (2) utilize JML notations
and tools to describe the constraint in refactored program to check the consis-
tency property, and (3) illustrate the proposed approach with a case study of
ARTC program.

The rest of the paper is organized as follows. In the following section, we
review related work. Section 3 gives an overview of Strategy pattern and JML.
A motivation example of Adaptive Road Traffic Control system is displayed in
Sect. 4. Section 5 presents the approach to checking consistency software refac-
tored programs. Section 6 concludes and gives some directions for future works.

2 Related Work

As mentioned earlier, William Opdyke [10], whose first introduced the refactor-
ing term for object-oriented software, opened a new research direction in the
field of software engineering. His research interested in describing the prerequi-
sites and automatic program restructurings required to guarantee preservation
of behavior. Moreover, he also developed a refactoring tool for Smalltalk.

According to analyzing of different criteria (e.g. the activities of refactor-
ing, the specific techniques and formalisms), Tom Mens et el. [9] provided an
extensive overview of existing research area. Particularly, they also discussed
about various formal techniques which are used in refactoring process, such as
invariants, pre/postcondition, graph transformation, program slicing, software
metric, etc. Their research was very valuable with others people whose study in
refactoring.

In [4], JML was used to specify the behaviors of a Java program. With the
support tools [3] the program will be static and dynamic testing. Static testing
will return syntax error and the invalided type of variables, dynamic testing (run-
time assertion checking) will notify all kinds of run-time assertion violations.



An Approach to Analyzing Execution Preservation 103

Nevertheless, these studies were only done purely on a software program and
have no related to refactoring process.

Some studies represent the behaviors of the software system via the assertions
(invariants, pre/postconditions) [10,11], one problem is that the static check-
ing of some preconditions may require very expensive analysis, or may even be
impossible.

In comparison to prior works, our approach focuses on analyzing execution
preservation between original program and evolution itself in refactoring process.
Based on the JML specification to represent pre/post-conditions of a scenario,
we use OpenJML tool to automated checking these constraints on both programs
and answer the question whether the refactored program is satisfied initial behav-
iors specification or not? The advantages of our work is feasibility in experiment
and semi- automated in checking behavior consistency.

3 Background

We interested in design pattern term as well as Java Modeling Language (JML)
as a theory foundation to execute our method in the next section.

3.1 Strategy Pattern

Design pattern, is a general reusable solution to a commonly occurring problem
within a given context in software design, has become popular since 1994 by
GOF [6], in which they have categorized the design patterns into three groups,
namely creational, structural, and behavioral patterns.

In this section, we clarify one behavioral pattern, namely Strategy pattern.
It encapsulates, defines a family of algorithms and makes them interchangeable
independently from clients. The strategy object changes the executing algorithm
in the particular context object.

Fig. 1. Strategy pattern

The Strategy pattern has three participants as shown in Fig. 1:

– IStrategy: The interface that is shared among the concrete strategy classes
in the family. Class Context uses this interface to call the algorithm defined
by a concrete strategy.



104 T.-H. Dao et al.

– ConcreteStrategy: Where the real implementation of strategy takes place.
– Context: The class maintains a reference of type IStrategy. In some cases,

Context may implement operations so that ConcreteStrategy can access its
data.

The advantage of using strategy pattern is that encapsulating algorithms in
individual classes will render reusing code much more convenient and hence, the
behavior of the Context can be altered at run-time dynamically.

3.2 Java Modeling Language

Java Modeling Language (JML) [7] is a behavioral interface specification language
(BISL) that can be used to specify Java classes and interfaces. JML specifications
or assertions can be added directly to source code as a special kind of comments
called annotation comments, or they can live in separate specification files. These
assertions are usually written in a form that can be compiled, so that their
violations can be detected at run-time.

The two main advantages in using JML are [7]:

– the precise, unambiguous description of the behavior of Java program modules
(i.e., classes and interfaces), and documentation of Java code,

– the possibility of tool support [3].

JML’s syntax is very close to the Java programming language, so it easily
used by programmers who have familiar with Java. In this section, we only
present a brief overview about functions as well as features of JML. For more
details, one can refer to [8].

4 A Motivating Example: Adaptive Road Traffic Control
System

4.1 ARTC System’s Description

Traffic congestion is an ever increasing problem in towns and cities all over the
world. Local authorities must continually work to maximize the efficiency of their
road networks and to minimize any disruptions caused by accidents and events.

From the object-oriented perspective, the initial ARTC system is described
by a simplistic model with four classes, namely Detector, TrafficController, Road
and Optimizer. The UML class diagram of initial ARTC system is shown in
Fig. 2.

The UML sequence diagram have accomplished the task of showing how the
objects interact with each other in scenario. We will portray our approach with
the two significant methods: gettrafficFlow() and optimizeTraffic(). The sequence
diagram for Scenario of functional processes is depicted in Fig. 3.



An Approach to Analyzing Execution Preservation 105

Fig. 2. The initial class diagram of ARTC system

Fig. 3. Sequence diagram for calculating optimal control

4.2 Selected Patterns

In Fig. 2, the method optimizeTraffic() belong to class Optimizer, which is
employed to optimize light signals of the ARTC system. However, the sys-
tem design may have following problems with the optimizeTraffic() of the class
Optimizer :

– Algorithms are so complex to implement in one, therefore make the source
code as large and arduous to maintain.

– It takes time as well as effort to add new algorithms to the existing ones.
– The code of the existing algorithms are difficult to reuse, especially when

one want to create a hierarchy from Optimizer class.

In order to overcome these limitations and improve the system, we are going
to optimize it by using Strategy pattern. As illustrated in Fig. 4, we detach
three optimization strategies (SignalOptimizeStrategy, TimeLimitOptimizeStrat-
egy, AdjacentOptimizeStrategy) from the class Optimizer then formed a hierarchy
of algorithm classes that share the interface OptimizerStrategy. After applying
Strategy pattern, the sequence diagram of the scenario calculating optimal con-
trol is re-drawed in Fig. 5.



106 T.-H. Dao et al.

Fig. 4. Class diagram of ARTC system after applying Strategy pattern

Fig. 5. Sequence diagram for calculating optimal control after applying Strategy
pattern

4.3 Behaviour Preservation

ARTC system has a real time characteristic because of immediate responses to
variant of traffic flow conditions, some identified constraints need to be preserved
are1:

– If the state is heavyTraffic and the signal is red, it will be ensured that the
signal is turned to green.

– If the state is lowTraffic and signal is red, it will be ensured that the signal-
Time is increased.

– If the state is highTraffic and direction is noChoose, it will be ensured that
the direction is turned to choose.

If we implement these constraints as a purely Java code, it may be not enough
to guarantee the correct behavioral execution. As a consequence, we employ
the JML’ code to annotate it in order to two purposes, firstly, ensuring the
performance of the source code is correctly, secondly, automated validation of
software programs.
1 Due to space considerations, we do not display completed constraints here.



An Approach to Analyzing Execution Preservation 107

5 Approach to Checking Consistency

5.1 Formal Representation of a Software Program

In order to automated checking the consistency between two programs after
applying design patterns in refactoring, we introduce a formal representation of
a software program as follows:

Definition 1 (Program). A program P is formally represented by a 2-tuple
〈CP , SP 〉, where CP is a set of classes and SP is a sequence of method invocation
statements in the main body of a program.

Definition 2 (Class). A class CiP ∈ CP is represented by a 3-tuple CiP =〈
MCiP

, ACiP
, ICiP

〉
, where MCiP

is a set of public methods, ACiP
is a set of

public attributes, and ICiP
states a set of class invariants.

Definition 3 (Method precondition). The precondition PREmiP
of the

method mei ∈ MCiP
in the class CiP , is a condition that it has to satisfy when

it begins to execute.

Definition 4 (Method postcondition). The postcondition POSTmiP
of the

method mei ∈ MCiP
in the class CiP , is a condition that it has to satisfy after

executing.

In Definition 1, SP is a set of sequence statements of invoking methods which
begins with the entry point of the main function in program P . In this paper,
we employ the “scenario” term to refer the SP signal.

Definition 5 (Scenario). A scenario SP is represented by a 4-tuple
SP = 〈CSP

, PRESP
,MSP

, POSTSP
〉, where CSP

⊆ CP represents a set of
classes involved in the scenario, PRESP

is the scenario precondition, MSP
is

a sequence of methods of involved classes, and POSTSP
states the scenario post-

condition.

Definition 6 (Scenario method). A method in the scenario is a 4-tuple
MkSP

=
〈
PREkSP

,MkSP
, POSTkSP

, k
〉
, where PREkSP

states the method pre-
condition, MkSP

is the public method of the involved in the scenario, POSTkSP
is

the method postcondition, and k is the execution order of method in the scenario.

In this paper, we consider the case that pre/postcondition of a method
is the conjunction of predicates on the attributes of classes involved in the
scenario, i.e., PREkSP

=
∧
P (ACijP ), where ACijP ∈ ACiP is a attribute,

CiP ⊆ CSiP and P is predicate. A scenario consists of a sequence of methods,
hence its pre/postcondition are formed by their pre/postcondition. A scenario
pre/postcondition is defined on pre/postconditions of all methods involved in
the scenario as follows.

Definition 7 (Scenario precondition). The scenario precondition PRESP
is

defined by the precondition of the first happened method in the scenario.



108 T.-H. Dao et al.

The precondition of the first method in the scenario specifies constraints of
all scenario-related public attributes.

Definition 8 (Scenario postcondition). The scenario postcondition POSTSP

is defined by the conjunction of the constraint on public attributeACP
in the method

postcondition POSTkSP
of the last happened method in MSP

.

Let a scenario S = (m1,m2, ..mn), where mi, i = 1..n, is the i-th method hap-
pened in the scenario. From Definition 6, we have mi = (premi,mmi, postmi, i)
and post(mi) =

∧
Pk(AkC), where Pk are the predicate on AkC, which is the

attribute of class C involved in the scenario. Assume that the scenario has
one public attribute AC that appears in both postconditions of two methods
mi and mj such that 1 ≤ i < j ≤ n. Then we have postmi = Pi(AC) and
postmj = Pj(AC). Since mi happens before mj , Pj(AC) must be hold after
executing the j-th method.

Definition 9 (Refactor). A refactor R using design patterns is denoted R :
P

D�−→ P ′, where P and P ′ are the original program and its evolution, respectively,
D is the applied pattern name.

5.2 Consistency Rules of Program Refactoring

In Subsect. 5.1, we address that the pre/postcondition of a scenario can be com-
puted from pre/postcondition of involved operations. In practice, the execution
of a scenario must be preserved its pre/postcondition.

Proposition 1 (Execution preservation of original program). A program
P is said to be execution preservation if with each scenario, its preconditions and
its postconditions are preserved before and after execution, respectively.

Formally, PRESP
[SP ]POSTSP

.

Proposition 2 (Execution preservation of refactored program). A refac-
tored program P ′ is said to be execution preservation with the original one P if
with the same scenario execution, its preconditions are preserved before and its
postconditions are hold after execution.

Formally, PRESP
[SP ′ ]POSTSP

.

In this proposition, the scenario pre/postcondition of the refactored program
are figured out through the scenario one of the original program according to
Definitions 7 and 8.

5.3 Applying the Proposed Approach to Check the Execution
Preservation of ARTC System

Back to the example in Sect. 4, all initial behaviors specification of the ARTC
system have been validated checking on Eclipse software by plug-in OpenJML.



An Approach to Analyzing Execution Preservation 109

Now, after refactoring, we are going to consider whether evolution program is
satisfied all behaviors specification of initial program or not?

In experiments, we have carried out the implementation the source code of
the ARTC system after refactoring. Based on the set of rules which was built in
these Section, we have shown the pre/postcondition of the evolution scenario as
well as checked the constraints on it. The experimental results are illustrated in
Fig. 6.

Fig. 6. The result of checking behavior preservation on refactored program

In other words, the refactored program not preserves all behaviors of initial
program in execution, so it should consideration how to the corrected refactoring
process.

6 Conclusion and Future Work

In this paper, we have proposed an approach to verify the execution preserva-
tion of refactored program which is performed by design patterns in software
program. In addition, JML is used to describe constraints of class behaviors. We
have proposed consistent rules to verify if the scenario execution of the origi-
nal program and refactored one is preserved the same constraints in evolution
process.

It has been many works to check the consistency of a program, however,
these works focus on the consistency between different phases of life cycle devel-
opment model (e.g., implementation and design phase) or different diagrams of
a model (e.g., state diagrams and sequence diagrams), but our research pays
attention in checking consistency between original program and its evolution in
the implement phase.

To demonstrate the approach, we have implemented a program of an ARTC
system in UML. In the case study, we have just illustrated only the consistency
verification when applying Strategy pattern in the only a pair of scenario, respec-
tively in the both programs, others scenarios may be done in a similar way for
the more complex system.



110 T.-H. Dao et al.

As portrayed in the case study, we can see that the calculation of pre and post-
condition of scenarios is time-consuming and error-prone if we do it manually.
For the future works, we will adopt tools to calculate automatically constraints
and verify the program evolution process.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: Pattern Languages. Center for Envi-
ronmental Structure, vol. 2 (1977)

2. Bottoni, P., Parisi-Presicce, F., Taentzer, G.: Coordinated distributed diagram
transformation for software evolution. Electron. Notes Theoret. Comput. Sci.
72(4), 59–70 (2003)

3. Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Rustan,
K., Leino, M., Poll, E.: An overview of JML tools and applications. Int. J. Softw.
Tools Technol. Transfer 7(3), 212–232 (2005)

4. Cok, D.R.: OpenJML: software verification for Java 7 using JML, OpenJDK, and
Eclipse. arXiv preprint arXiv:1404.6608 (2014)

5. Dong, J., Sheng, Y., Zhang, K.: A model transformation approach for design pat-
tern evolutions. In: 2006 13th Annual IEEE International Symposium and Work-
shop on Engineering of Computer Based Systems, ECBS 2006, pp. 10–92 (2006)

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1995)

7. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML: a behavioral
interface specification language for Java. ACM SIGSOFT Softw. Eng. Notes 31(3),
1–38 (2006)

8. Leavens, G.T., Poll, E., Clifton, C., Cheon, Y., Ruby, C., Cok, D., Müller, P.,
Kiniry, J., Chalin, P., Zimmerman, D.M., et al.: JML reference manual (2008)

9. Mens, T., Tourwe, T.: A survey of software refactoring. IEEE Trans. Software Eng.
30(2), 126–139 (2004)

10. Opdyke, W.F.: Refactoring: a program restructuring aid in designing object-
oriented application frameworks. Ph.D. thesis, University of Illinois at Urbana-
Champaign (1992)

11. Roberts, D.B., Johnson, R.: Practical analysis for refactoring. University of Illinois
at Urbana-Champaign (1999)

12. Zhao, C., Kong, J., Zhang, K.: Design pattern evolution and verification using
graph transformation. In: 2007 40th Annual Hawaii International Conference on
System Sciences, HICSS 2007, p. 290a, January 2007

http://arxiv.org/abs/1404.6608

	An Approach to Analyzing Execution Preservation in Java Program Refactoring
	1 Introduction
	2 Related Work
	3 Background
	3.1 Strategy Pattern
	3.2 Java Modeling Language

	4 A Motivating Example: Adaptive Road Traffic Control System
	4.1 ARTC System's Description
	4.2 Selected Patterns
	4.3 Behaviour Preservation

	5 Approach to Checking Consistency
	5.1 Formal Representation of a Software Program
	5.2 Consistency Rules of Program Refactoring
	5.3 Applying the Proposed Approach to Check the Execution Preservation of ARTC System

	6 Conclusion and Future Work
	References


