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Abstract. This paper presents a conceptual framework and multi-agent
model for context-aware decision support in dynamic smart environments
based on heterogeneous knowledge sources. The framework relies on dis-
tributed ontologies and allows us to model context-aware agents which
reason using rules that are derived from ontologies using the notion of
multi-context systems. The use of the proposed framework is illustrated
using a simple system developed from ontologies considering three dif-
ferent smart environment domains.
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1 Introduction

There is no doubt that with an increasing number of smart devices such as
smartphones in use, the vast amounts of contextual data being generated has
great influence on context-aware mobile computing research. Smartphones have
a variety of embedded sensors that can be used to automate data collection and
provide a platform to infer rich contextual data about users, including location,
time, and environmental condition, among others. This is known as customized
information according to the specific context. To be more precise, these sensors
can be used to gather the contextual information of a user or to manipulate
the context. Different notions of context have been studied across various fields
of computer science and various physical and conceptual environmental aspects
can be included in the notion of context [11]. Among others, Dey et al. [6] define
a context-aware system as a system which uses context to provide relevant infor-
mation and/or services to its user based on the user’s tasks. The formal context
modelling and reasoning about context is one of the fundamental research areas
in context-aware computing. In the literature, various context modelling and rea-
soning approaches have been proposed, including ontology and rule-based app-
roach [8,13,14]. In our previous work [13,14], we have developed formal logical
frameworks and shown how context-aware systems can be modelled as multi-
agent reasoning agents. A formal logical model allows us to capture a system’s
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behaviour in a systematic and precise way. This is because a formal logic has sim-
ple unambiguous syntax and semantics, which also allows automated reasoning.
Our approach to context modelling was based on a domain specific centralised
ontology, which allows a formal representation of domain knowledge and advanc-
ing contextual knowledge sharing among the agents. However, in a real context-
aware deployment setting, we can envisage a coalition of heterogeneous domains
which need to mutually share/exchange context knowledge. This needs different
modelling approach to deal with distributed context handling considering more
than one domain. In this connection, the notion of multi-context systems has
been used for interlinking different knowledge sources in order to enhance the
expressive capabilities of heterogeneous systems. A multi-context system (MCS)
includes a set of contexts and a set of inference rules that allows information
to flow among different contexts [7]. In MCS, each context is defined as a self-
contained knowledge source which includes the set of axioms and inference rules
to model the system and perform local reasoning. Literature highlighted many
definitions of multi-context systems (see e.g., [1,5]). In [5], Brewka et al. define
multi-context system as a number of people, agents, databases etc. to describe
the available information from a set of contexts and inference rules and spec-
ify the information flow among these contexts. In [1], Benslimane et al. have
described ontology as a context, which is itself an independent self-contained
knowledge source having a set of axioms and inference rules with its own reasoner
to perform reasoning. In this work, we consider the concept of context in two
levels. The first level is based on multi-context system to model heterogeneous
systems similar to contextual ontologies studied by [1]. For the second level, we
follow the approach proposed in our previous work [13,14], where a context is
formally defined as a (subject, predicate, object) triple that states a fact about
the subject where — the subject is an entity in the environment, the object is a
value or another entity, and the predicate is a relationship between the subject
and object. In this paper, we extend our previous work [13] by introducing a
different modelling approach to deal with distributed context handling consider-
ing more than one domain. This approach is novel in a sense that context-aware
agents use contextual information which are extracted from different knowledge
sources.

The rest of the paper is organized as follows. In Sect. 2, we briefly review dis-
tributed description logics and related work. In Sect. 3, we contextualize ontolo-
gies using three domains to illustrate the central idea of our multi-context sys-
tems. In Sect. 4, we briefly describe a tool, D-Onto-HCR, which is developed
to translate the semantic knowledge into Horn-clause rules which are used to
model context-aware systems as multi-agent systems. In Sect. 5, we presents a
conceptual framework for modelling context-aware reasoning agents using the
MCS notion. In Sect. 6, we illustrate the use of the proposed framework using
an example system and conclude in Sect. 7.
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2 Background and Related Work

2.1 Distributed Description Logics

Recent developments in the field of semantic web have led to a renewed interest in
the distributed knowledge bases [3,9,15]. A growing body of research realizes the
significance of extending the OWL based formalisms by providing inter-ontology
mappings through distributed description logics. Distributed description logic
(DDL) is a formal logical framework which combines different description logics
(DLs) knowledge bases to express heterogeneous information. A DDL is basically
a generalization of the DL framework, which is designed to formalize multiple
ontologies interconnected by semantic mappings [15]. One of the reasons for
interconnecting ontologies is to preserve their own identity and specify their
independence [9]. DDLs have introduced the notion of multiple ontologies with
distributed reasoning where each local ontology has its own local knowledge
base. Each local ontology knowledge base consists of TBox and ABox axioms.
The correspondences of different ontology axioms is called inter-ontology axioms
or bridge rules. Bridge rules map the TBox axioms of one ontology with the TBox
axioms of other ontology in an implicit manner. In other words, distributed TBox
expresses the semantic relations among local TBoxes via bridge rules. These
bridge rules allow concepts of an ontology to subsume a concept from another
ontology, and they express the semantic mappings among different ontologies. A
bridge rule is an inter-ontology axiom having one of the following forms: Ci�−→Dj ;
Ci�−→Dj ; where Ci, Dj are concepts of ontologies Oi and Oj respectively. A
distributed DL knowledge base (DKB) is a set of different DL knowledge bases,
expressed as a pair 〈T,A〉, which consists of distributed TBoxes and ABoxes. Let
us assume we have a collection of DLs and each DL is represented by {DLi},
where i ∈ I is an element of a non empty set of indexes used to identify ontologies.

A distributed TBox (DTBox) defines TBoxes {Ti}i∈I of all local DLs from
their corresponding domain ontologies, and bridge rules between these TBoxes
which are of the form B = {bij} (which states a set of bridge rules B from DLi

to DLj and {∀i, j(i 	= j) ∈ I}). So, DTBox is represented as T = 〈{Ti}i∈I , B〉.
A distributed ABox (DABox) A = 〈{Ai}i∈I , C〉 consists of ABoxes {Ai}i∈I of

all local DLs from their corresponding domain ontologies, and a set of individuals
that may either be partial or complete are of the form C = {cij} which means
the individuals corresponds from DLi to DLj and {∀i, j(i 	= j) ∈ I}.

2.2 Related Work

There has been a renewed research interest in making multiple heterogeneous
ontologies interoperate. For example, the work by [15] has introduced a system
which can carry out reasoning services with multiple ontologies. The authors have
discussed the reasoning problem in multiple ontologies interrelated with seman-
tic mappings, where the results of local reasonings performed in single ontologies
are combined via semantic mappings to reason over distributed ontologies. In [4],
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a framework is presented for multi-context reasoning systems, which allows com-
bining arbitrary monotonic and nonmonotonic logics and non-monotonic bridge
rules are used to specify the information flow among contexts. In [2], authors
have proposed a distributed algorithm for query evaluation in a Multi-Context
Systems framework based on defeasible logic. In their work, contexts are built
using defeasible rules, and the proposed algorithm can determine for a given
literal P whether P is (not) a logical conclusion of the Multi-Context Systems,
or whether it cannot be proved that P is a logical conclusion. However, our
purposed approach of reasoning is quite different in a sense that heterogeneous
knowledge sources are translated into a set of Horn-clause rules, which are used
to model context-aware non-monotonic rule-based agents.

3 Contextualizing Ontologies Using Multi-context
System

In [13], we have shown how we use OWL 2 RL ontologies and Semantic Web
Rule Language (SWRL) for context-modelling and rule-based reasoning that
enables the construction of a formal context-aware system as a distributed non-
monotonic rule-based agents. In this work, to model the systems, we extract
heterogeneous contextual information from multiple ontologies with the intention
of preserving the identity and independence of each specialized domain ontology.
To model distributed domains for an example system, we develop three ontologies
named as Smart Patient Care (OSPC), Smart Home (OSHO) and Smart Hospital
(OSHP ) which have their corresponding DL knowledge bases as DLSPC , DLSHO

and DLSHP respectively. We have discussed how we translate a DL ontology
(OWL 2 RL) into a set of plain text Horn-clause rules in [13]. Additionally,
we construct the bridge rules which are semantically mapped using distributed
DL Knowledge bases. Figure 1 depicts the extracts of class hierarchies of three
ontologies. Some of the bridge rules are given below:

OSPC : Patient �−→ OSHO : AuthorizedPerson. (1)
OSPC : Nurse �−→ OSHO : AuthorizedPerson. (2)
OSPC : Nurse �−→ OSHP : ParamedicalStaff. (3)
OSPC : CallAmbulance �−→ OSHP : AmbulatoryClinic. (4)

Bridge rules 1 and 2 show the relationship between OSPC and OSHO, and
rules 3 and 4 show the relationship between OSPC and OSHP . Rule 1 states that
a Patient from Patient Care Ontology is an Authorized Person in the Smart
Home. Rule 2 and 3 express that a Nurse from the Patient Care Ontology is
an Authorized Person in the Smart Home and at the same time a Nurse is a
Paramedical staff in the Smart Hospital. These rules can also be represented in
first order form as follows:

Patient(?p) 
→ AuthorizedPerson(?p) (1)

We model the context using ontologies (including bridge rules, OWL 2 RL
and SWRL rules) and extract a set of Horn-clause rules from different ontologies
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Fig. 1. Class hierarchy of smart environment ontologies

using the tool discussed in the next section. Each agent in the context-aware
system has a program, consisting of these extracted Horn clause rules.

4 D-Onto-HCR

To extract the rules from different ontologies, we developed an OWL-API based
translator, which takes ontologies as input and then translates the set of axioms
(in OWL 2 RL and SWRL form) into a set of plain text Horn-clause rules. The
design of the OWL API corresponds to the OWL 2 Structural Specification and
this dynamic design model allows developers to provide flexible implementations
for major components of the system. In OWL API, the names and hierarchies
for the axioms, class expressions and entities correspond to the OWL structural
specification. Indeed, there is a proximal one to one translation between OWL
API model interfaces and the OWL 2 Structural Specification, implying that this
becomes easier to correlate the high level OWL 2 specification with the design
of the OWL-API [10]. To extract ontology axioms and facts, we use OWL-API
to parse the ontology.

Protégé [12] ontology editor allows SWRL rules to be written in Horn-clause
rule format but practically these rules are written in functional syntax which are
in DL-Safe rule form. D-Onto-HCR translates DL-safe rules axioms into Horn-
clause rules format. Additionally, this translator extracts concepts from different
ontologies and maps them correspondingly in the from of bridge rules which are
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Fig. 2. Distributed semantic knowledge translation process

transformed in OWL 2 RL rule format. These rules are then translated into a set
of plain text Horn-clause rules format. Figure 2 shows the distributed semantic
knowledge translation process. Each ontology has an ontology IRI (International
Resource Identifier) to identify ontology and their classes, properties and indi-
viduals. The translation process works as follows: (i) When the tool starts its
execution, it loads all listed ontologies from the published source as an input in
OWL/XML format; (ii) It uses OWL parser to parse the ontologies into OWL
API objects which then extracts the set of TBox and ABox axioms; (iii) The set
of TBox axioms are then translated into a set of plain text Horn clause rules;
(v) ABox axioms and DL safe SWRL rules are already in the Horn-clause for-
mat; (vi) The bridge rules (inter-ontology axioms) are extracted from different
ontologies and are also transformed into a set of Horn-clause rules. Multi-context
system is a powerful framework for modelling different knowledge sources. Con-
sidering the reservations of keeping their own identity and independence as an
independent system, the D-Onto-HCR tool transforms useful information from
these knowledge sources (without making any alteration in ontologies) into a
standardized format, i.e., Horn-clause rule format.

5 Multi-agent Model over Heterogeneous Knowledge
Sources

We extend the logical framework presented in [13] by incorporating the notion
of multi-context systems where rules are derived from heterogeneous seman-
tic knowledge sources. The system consists of nAg(≥1) individual agents Ag =
{1, 2, ...., nAg}. Each agent i ∈ Ag has a program, consisting of a finite set of
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strict, defeasible, and bridge rules, and a working memory, which contains facts.
Each agent in the system is represented by a triple (�,F ,), where F is a
finite set of facts contained in the working memory, � = (�s,�d,�br) is a finite
set of strict, defeasible, and bridge rules, and  is a superiority relation on
�. Strict rules (�s) are non-contradictory whereas defeasible rules (�d) can be
defeated based on contrary evidence. Bridge rules (�br) are non-contradictory
rules which represent the distributed knowledge base concepts. In this frame-
work, each context-aware agent is designed to solve a specific problem. Agents
in the system acquire contextual information from domain specific ontologies
(rules and facts of an agent can be derived from one or multiple ontologies), per-
form reasoning (based on the information they have in their knowledge bases),
communicate with each other, and adapt the system behaviour accordingly. An
example set of Horn-clause rules and facts are shown in Table 1. As system moves,
the matching rules will be fired based on their predefined priorities which are
set by the system designer. That is, a context-aware system composed of a set of
rule-based agents, and firing of rules that infer new facts may determine context
changes and represent overall behaviour of the system.

In this framework context-aware agents are modelled using different knowl-
edge sources, where each of them has its own knowledge source and a reasoning
strategy. For example, Fig. 3 shows that working memories of three agents con-
tain facts (elements of ABox) from one ontology or multiple ontologies. Agent
1’s working memory contains the contextual information C11, C12, C15, and C17

which are instances of the Smart Home ontology and C22 which is an instance
of the Smart Hospital ontology. The working memory of agent 2 has contextual
information only from Smart Hospital ontology whereas the working memory
of agent N contains the instances from all the ontologies. In a similar fashion
bridge rules of an agent include concepts from multiple ontologies.

Fig. 3. MCS based context-awareness in the working memory of agent i
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Table 1. Example rules for smart environment context-aware system

Agent 1: Home care

Initial facts: Person(’John), AuthorizationID(’P0001),
hasAuthorizationID(’John, ’P0001), FireFighter(’Simon)

R11: Person(?p), hasAuthorizationID(?p, ?aid), AuthorizationID(?aid) →
AuthorizedPerson(?p)

R12: FireFighter(?ff) �→ AuthorizedPerson(?ff)

R13: Tell(3,1, NotifyPerson(?p, ?loc)) → NotifyPerson(?p, ?loc)

R14: NotifyPerson(?p, ?loc), FireFighter(?ff) → isRescuedBy(?p, ?ff)

Agent 2: Smoke detector

Initial facts: Smoke(’True), hasNotifiedSmokeLocation(’True, ’Kitchen)

R21: Smoke(?s), hasNotifiedSmokeLocation(?s, ?loc) ⇒ BurglarAlarm(?loc)

R22: Smoke(?s), hasNotifiedSmokeLocation(?s, ?loc) ⇒ ∼ BurglarAlarm(?loc)

R23: BurglarAlarm(?loc) → Tell(2, 3, BurglarAlarm(?loc))

Rule Priority: R21 � R22

Agent 3: Emergency monitor

Initial facts: PersonWithinRange(’John, ’Kitchen), isFireExtinguisherInstalled
(’FEK01, ’Yes)

R31: Tell(2, 3, BurglarAlarm(?loc)) → BurglarAlarm(?loc)

R32: BurglarAlarm(?loc) → hasAlarmingSituation(?loc, ’Emergency)

R33: hasAlarmingSituation(?loc, ’Emergency), isFireExtinguisherInstalled
(?fe, ’Yes) → ActivateFireExtinguisher(?loc)

R34: hasAlarmingSituation(?loc, ’Emergency), PersonWithinRange(?p, ?loc) →
NotifyPerson(?p, ?loc)

R35: NotifyPerson(?p, ?loc) → Tell(3,1, NotifyPerson(?p, ?loc))

6 Case Study: Smart Environment Facilitator

We model a smart environment facilitator system considering three different and
independent domains, namely Smart Home, Smart Hospital, and Smart Patient
Care. The purpose is to model context-aware reasoning agents in healthcare
environments which require sharing of knowledge across the domains, includ-
ing data generated by embedded sensors and wearable smart badges in that
environments, while dealing with semantic heterogeneity that exists across the
knowledge sources. The Smart Home ontology models the assisted living environ-
ment with user-friendly, comfortable and security related facilities. The Smart
Hospital ontology models medical services provided to the inpatient and outpa-
tient care. The Smart Patient Care ontology models various devices connected
with a patient which monitor the patient’s vital information, including blood
pressure, blood sugar, and heart rate. As we have already developed ontologies
of these domains, to illustrate the use of the framework we consider a very simple
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example scenario which includes three agents. As shown in Table 1, each agent
has a set of facts and a set of Horn-clause rules. In Table 2, we have shown
example reasoning steps to demonstrate how the system generates the speci-
fied goals within n time steps and interaction is performed between agents by
exchanging messages using Copy action [13]. The agents are resource-bounded
in terms of the computational time, communication, and space in memory that
it consumes [13]. The semantics of the agents’ language is based on transition
systems and follow the approach of [13]. We view the process of producing new
contexts from existing contexts as a sequence of states of an agent, starting from
an initial state, and producing the next state by one of the following actions:
Rule: firing a matching rule instance in the current state (possibly overwriting
a context from the previous configuration due to space bound and conflicting
contexts appearing in the memory); Copy: if agent i has an Ask(i, j, P ) (or
a Tell(i, j, P )) in its current state, then agent j can copy it to its next state
provided j’s communication counter has not exceeded communication counter
threshold value (possibly overwriting a context from the previous configuration
due to space bound and conflicting contexts appearing in the memory); and
Idle: which leaves its configuration unchanged.

As we see the structure of the table, the left most column represents the time
step, the rest each three columns Memory config., Action, and #Msg are assigned
for each of the agents which represent the newly inferred contextual information,
an appropriate action performed by an agent in a particular step to make a
transition from one configuration (state) to another, and the number of messages
exchanged respectively. In the column Memory config., the left side of the vertical
bar (|) is known as static memory which holds the set of initial facts while the
right side (known as dynamic memory) shows the newly derived/communicated
contextual information. The size of static memory is determined by the set of
initial facts, and the size of dynamic memory is set by the system designer
considering minimal memory units required to achieve the desired goals. At
the initial configuration, the dynamic memory size of agent 1 and agent 2 is
1 unit while the dynamic memory size of agent 3 is 2 units. However, if we
reduce these memory units, the system would not be able to produce a desired
goal, e.g., a resident in the smart home is rescued by a fire fighter in case of
an emergency alarming situation is reported in the kitchen (i.e., the context
isRescuedBy(′John,′ Simon) appearing in the working memory of one of the
agents in the system).

7 Conclusion and Future Work

In this paper, we present a context-aware multi-agent model using the notion of
multi-context systems. The proposed framework considers distributed descrip-
tion logic approach to suitably model the core notion of multi-context systems
using semantic knowledge sharing. In future work, we aim to develop an opti-
mized Android based application incorporating multi-context system with the
specialized domain ontologies having their own conceptualization structure and
reasoning strategy.
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