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Abstract. Next-generation 5G networks is the future of information
networks and it will experience a tremendous growth in traffic. To meet
such traffic demands, there is a necessity to increase the network capacity,
which requires the deployment of ultra dense heterogeneous base stations
(BSs). Nevertheless, BSs are very expensive and consume a significant
amount of energy. Meanwhile, cloud radio access networks (C-RAN) has
been proposed as an energy-efficient architecture that leverages the cloud
computing technology where baseband processing is performed in the
cloud. In addition, the BS sleeping is considered as a promising solution
to conserving the network energy. This paper integrates the cloud tech-
nology and the BS sleeping approach. It also proposes an energy-efficient
scheme for reducing energy consumption by switching off remote radio
heads (RRHs) and idle BBUs using a greedy and first fit decreasing
(FFD) bin packing algorithms, respectively. The number of RRHs and
BBUs are minimized by matching the right amount of baseband com-
puting load with traffic load. Simulation results demonstrate that the
proposed scheme achieves an enhanced energy performance compared to
the existing distributed long term evolution advanced (LTE-A) system.

Keywords: Base station sleep · Bin packing · Cloud computing ·
C-RAN · Energy efficiency · HetNets · Virtualization

1 Introduction

Everyday, the number of connected devices are growing into billions and today’s
mobile operators are facing a serious challenge. For example, according to Huawei
Technologies, in the year 2020, 100 billions of devices will be connected [1]. This
will cause an increase in traffic from smart phones like iphone, android and
other high-end devices like the iPad, kindle and gaming consoles spawning a raft
of data intensive applications, Internet of Things (IoT) and machine-to-machine
connections. As a result, fifth-generation (5G) networks have targeted to increase
capacity by 1000 times, data rates by 100 times and millisecond-level delay [2].
To fulfil the capacity demands, more base stations (BSs) with a mixture of macro
and small cells forming a heterogeneous network (HetNet) have to be deployed
by operators, which results to a significant amount of energy consumption.
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This contributes to the mobile network’s operating expenditure (OPEX) and
emits large amounts of CO2 which causes a greater impact to the environment.

A large amount of power within a base station (BS) is consumed by the
power amplifier (PA) and baseband unit (BBU) [3]. The energy consumption
of BBU implementation is getting more and more dominant in small cells due
to gradual shrinking of cell size and the growing complexity of signal process-
ing [3]. The traditional distributed long term evolution advanced (LTE-A) BSs
architecture consumes a significant amount of energy and waste a lot of com-
puting power as the BBU servers are not shared but serve each individual cell
[7]. The BSs have been traditionally preconfigured to provide peak capacities to
reduce outages. Nevertheless, the mobile traffic varies significantly, irrespective
of the either the time of day or traffic profile and is rarely at its peak in prac-
tical scenarios [8]. Many energy-efficient schemes for wireless systems have been
implemented such as BS sleeping [4–6] where offloading traffic to neighbouring
BSs and then completely turning off the BS during low traffic, discontinuous
transmission (DTX) where a BS is temporally switched off without offloading
and cell zooming. However, current BS processing capacity is only being used for
its own coverage rather than being shared within a large geographical area. As a
result, during the evening, BSs in residential areas are over-subscribed while BSs
in business areas stay under-subscribed. These under-subscribed BSs still con-
sume a significant amount of energy even when they are not necessarily required
to be kept active. Therefore, it is imperative to solve this problem and free up
the processing capacity and save the corresponding energy.

Meanwhile, cloud radio access networks (C-RAN) have been proposed as a
promising solution for minimizing energy within the cellular networks by lever-
aging cloud computing virtualization technology. With virtualization, baseband
workload is consolidated on a minimum number of BBU servers and base-
band processing is performed on virtual BBUs (vBBU) and resources are pro-
visioned in accordance to traffic demands. C-RAN comprise of three parts: (i)
remote radio head (RRH), which performs lower layer analogue radio frequency
functions, (ii) BBU for digital signal processing, and (iii) fronthaul connection
between the BBU and RRH. The C-RAN architecture is shown in Fig. 1. Fur-
thermore, more energy savings can be gained from reduced air conditioning cost
and reduced equipment room size. This paper integrates C-RAN in HetNets and
proposes an energy efficient scheme for reducing energy consumption in C-RAN
HetNets by switching off RRHs using a greedy algorithm and also switching
off idle BBUs using the first fit decreasing (FFD) bin packing algorithm. The
number of RRHs and BBUs are minimized by matching the right amount of
baseband computing load with traffic load. The cloud based energy minimiza-
tion is formulated as a bin packing problem where BS traffic items are to be
packed into compute servers, called bins, such that the number of bins used are
minimized. The simulations results validates the energy efficiency improvement
of the proposed scheme and is compared with the distributed LTE-A system.

This paper is structured as follows: Sect. 2 discusses the related works while
the system model and problem formulation is described in Sect. 3. The proposed
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Fig. 1. An illustration of a C-RAN architecture.

scheme with computational resource models and greedy BS switching algorithm
are formally are also described in Sect. 3. Section 4 provides the simulation results
and discussion, while Sect. 5 provides some concluding comments.

2 Related Works

There are a plethora of solutions towards energy-efficient BSs ranging from energy-
efficient hardware design, BS sleeping, to the optimal deployment of BSs [4,9].
This paper will concentrate on BS sleep which is a promising solution for min-
imizing energy consumption in both the radio side and cloud side of C-RAN
HetNet. Authors in [10] proposed a BBU-RRH switching scheme for C-RAN
that dynamically allocates BBUs to RRHs based on the imbalance of subscribers
in business and/or residential areas. Even though the scheme in [10] reduces
the number of BBUs required, the model performs poorly during high-traffic
periods and thus still consumes a lot of energy because more BBUs are allo-
cated to meet traffic demands. Authors in [11] developed a BBU pool test-
bed using virtualization technology on general purpose processors (GPPs). The
BBUs are dynamically provisioned according to traffic load. However, the paper
fails to show how the number of BBUs are reduced while traffic load varies.
L. Jingchu et al. [12] presented a mathematical model to quantify the statis-
tical multiplexing gain of pooling virtual BSs. The author use a multi dimen-
sional markov model to evaluate pooling gain considering both compute and radio
resources. Nevertheless, the author have not considered energy consumption in the
BS-Cloud. In [13], the authors considers the energy-delay trade-offs of a virtual BSs
considering the BS sleeping approach in general IT platforms. The paper does not
show how the energy savings of the virtual BSs model scales with traffic load. S.
Namba et al. [14] proposed a network architecture, called colony-RAN, which has
the ability to flexibly change cell layout by changing the connections of BBUs and
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RRHs in respect to the traffic demand.However, the proposedmethod has frequent
reselections of RRH to BBU, i.e., ping-pong effects.

Since this paper combines HetNet and C-RAN, research on BS sleep in Het-
Nets will be also studied. The author in [15] introduce energy-efficient sleep
mode algorithms for small cell BSs in a bid to reduce cellular network power
consumption by switching OFF some BS equipments in idle conditions in accor-
dance to variations in traffic load. However, the author assume that the pico
and macro cells consume constant power of 12 W and 2.7 kW respectively irre-
spective of traffic load. The author in [16] combines the sleep mode feature of
picocells and load balancing between the different types of base stations in Het-
Net, hence improving up to 68% for low traffic load and up to 33% for medium
traffic load. However, users are assumed to be uniformly distributed whereas
users are non-uniformly distributed in reality.

3 System Model and Problem Formulation

3.1 System Model

The proposed system model is shown in Fig. 2. Consider an LTE-A C-RAN
HetNet downlink system consisting of a single macro RRH (MRRH) and overlaid
by several small cell RRHs (SRRHs). Assume a set of RRHs R = {RRHj : j =
1, 2, ..., N} where N is the maximum number of RRHs and RRH1 is the center
MRRH. Define a set of users in the entire network as U . Moreover, assume a set
of computing servers in the pool M = {GPPi : i = 1, 2, ...,M} where M is the
number of physical computing servers for processing baseband signals of N cells.
The global cloud controller (GCC) is located in the BS cloud and it is where
the greedy BS switch off and the FFD algorithms are located. The baseband
processing procedure of each RRH is divided into L tasks with a set L = {Tk :
k = 1, 2, ..., L} where Tk is the kth baseband task for RRHj . The computing
processing power is measured in Giga Operations Per Second (GOPS). Each
server has maximum capacity C GOPS. The total computing resources required
by RRHj is denoted ρreq

j GOPS such that:

Global cloud controller

Fig. 2. System Model.
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ρreq
j =

L∑

k=1

ρreq
j,k ; ρreq

j,k ε(0, 1] (1)

where ρreq
j,k is the computing resource requirement for Tk from RRHj .

Therefore, the computing resource at server Si used by RRHj can be calcu-
lated as:

ρserver
i,j =

L∑

k=1

ξi,j,kρreq
j,k ; ξi,j,kε{0, 1} (2)

where ξi,j,k = 1 when Tk from RRHj is processed by server Si and ξi,j,k = 0
otherwise. Tasks from RRHj can be processed by a single server or distributed
among different serves such that the constraint below hold:

M∑

i=1

L∑

k=1

ξi,j,k = L (3)

And the BBU server processing is limited by server capacity C as:

N∑

j=1

ρserver
i,j ≤ C (4)

The energy minimization in the cloud for M BBU servers can be formulated
from two components [8]: dynamic and static power consumption. The dynamic
energy consumption is dependent on the amount of processing resources on the
server while the static part comprises the energy consumption irrespective of
traffic load, but other purposes such as coolings, etc. Now, the energy minimiza-
tion problem can be formulated as:

min
ξi,j,k

M∑

i=1

⎛

⎝δ

N∑

j=1

ρserver
i,j + εiPstatic

⎞

⎠ (5)

εi =

{
0

∑N
j=1

∑L
k=1 ξi,j,k = 0

1 Otherwise
(6)

where δ is the power factor in GOPS/watts. εi shows the status factor of server
Si whether Si is ON or OFF. Pstatic denotes the static power that is constant
for every BBU server. Constraints are from (3) and (4).

3.2 Computational Resource Model

The baseband tasks from cells need to be quantified, i.e., they need to be mapped
into computing processing in GOPS. The computing resource requirement per
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user per task is calculated based on the energy consumption model in [17]. The
model provides energy modelling for different types of BSs such as macro, micro,
pico and femto BSs. In this paper, the power equation in [17] for calculating the
computing resources required for baseband tasks is adopted. Defining L as the
set of baseband tasks and X = {BW,Ant,Mod,Cod,R} is the list of parameters
affecting the scaling of baseband processing tasks, where BW, Ant, Mod, Cod
and R are the system bandwidth, number of antennas used by a user, modulation
bits, coding rate and number of PRBs respectively. The power equation is written
as [17]:

Pu =
∑

iεL
Pi,ref

∏

xεX

(
xact

xref

)si,x

(7)

where Pu and Pi,ref are the processing power required by user u and the process-
ing power of reference system in [17]. The variables xact and xref denotes the
actual and reference values of parameters affecting baseband scaling. The vari-
able si,x denotes the scaling exponents. Users that generate traffic are ran-
domly distributed in the cell area and the generated traffic are mapped into
processing resources as per user per task. Even though there are many baseband
tasks processed by a BS, this paper considers two baseband tasks for simplicity,
i.e., k = 2: (i) Frequency-Domain (FD) processing for mapping/demapping and
MIMO equalization, and (ii) Forward Error Correction (FEC) denoted by the
following equations, respectively, in GOPS:

PFD
u =

(
30Ant + 10Ant2

) R

100
(8)

PFEC
u = 20

Mod

6
Cod ∗ Ant ∗ R

100
(9)

where PFD
u and PFEC

u are FD and FEC processing requirements, respectively,
per user u per task k in GOPS. Ant is the number of antennas used per user,
Mod is the modulation bits, Cod is the coding rate used and R is the number
of PRBs used by u at time t. In the bin packing algorithm, the tasks per cell
are packed on servers hence the processing requirements per task per cell for the
two tasks is calculated as follows:

{
ρreq

j,1 =
∑

uεU PFD
u,t , when k = 1

ρreq
j,2 =

∑
uεU PFEC

u,t , when k = 2
(10)

where U is the set of users within a cell.

3.3 FFD Bin Packing Scheme

A classical bin packing problem consists of packing a series of items with differ-
ent sizes into a minimum number of bins with capacity C. The C-RAN resource
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allocation problem can be modelled as the bin packing problem where the aim is
to pack items, called baseband tasks L, from cell areas R into a set of servers M
such that the number of servers used are minimized and hence the energy con-
sumption reduction. Since the problem of finding optimal packings is NP-hard,
i.e., there is no way of being guaranteed the best solution without checking every
possible solutions. Amongst many other solutions, the approximation algorithm
is the mostly used because of fast heuristics that generate good but not neces-
sarily optimal packings. The approximation algorithms of FFD is considered.

The FFD algorithm illustrated in Algorithm 1 is adopted, which is a natural
way of finding the approximation bin packing. In this algorithm, all bins are
initially empty. Sort all item tasks in descending order. Starts with the current
number of bins M and item k. Consider all bins GPPi : i = 1, ...,M and place
item task ρreq

j,k baseband task in the first bin that has sufficient residual capacity.
If there is no such bin, increment i and repeat until all items is assigned.

Algorithm 1. First-Fit Decreasing Algorithm
Input: a set of RRH cells R, a set of tasks L within RRHj , their
resource requirements ρreq

j,k , and GPP list M , GPP capacity Ci
cap

Output: Number of BBUs M
Sort all RRH tasks in decreasing order of ρreq

j,k .
Launch one GPP of capacity i

cap.
for each ρreq

j,k that arrives do
if there is a server where ρreq

j,k will fit then
Place ρreq

j,k into the left most GPP;
else

Launch a new GPP;
Place ρreq

j,k into that GPP
end

end
end
Return M

3.4 Radio Side Energy Consumption Model

The power consumption model in [17] is modified to come up with a generalized
component based power consumption model of a C-RAN RRH, denoted Pj ,
which is formulated as:

Pj =

⎧
⎨

⎩
NTRX

ρjPmax

ηP A
+PRF

(1−σDC)(1−σMS) ; if 0 < ρj ≤ 1

Psleep; if ρj = 0
(11)
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where NTRX , ρj and Pmax denotes the number of transmitter chains, the nor-
malised traffic load of RRHj and maximum transmission power of RRHj . The
variables PRF and PBB denotes the RF and BBU power consumption, respec-
tively. The variables ηPA, σfeeder, σDC , σMS , σcool denotes power amplifier effi-
ciency, RF feeder losses, DC losses, MS losses and cooling losses, respectively.

3.5 Greedy BS Switch OFF Algorithm

The proposed algorithm is called the greedy RRH switch OFF algorithm and it is
centralised and runs in the BS cloud inside the GCC where network information
is available. In the algorithm, only the small cell RRHs are to be switch off based
on a utility function Fj(PRB), while maintaining quality of service (QoS) i.e.,
maintaining the minimum datarate, rmin.

Fj(PRB) =
number of RRHj PRBs occupied

Total number of RRHj PRBs
(12)

It is assumed that there are Nchn available channels in every cell for transmission
with each having bandwidth BW = B/Nchn where B is the cell bandwidth.
In this regard, a channel means one PRB which is allocated to each user per
scheduling interval. For simplicity it is assumed that different frequency bands
are used by adjacent BS so inter channel interference (ICI) has been taken care
of. Thus, the minimum data rate of a user u can be formulated as:

rmin = BW.log2

(
1 +

η0.Pu

dα

)
(13)

where α is the path-loss exponent and η0 = G0/N0 includes the effect of antenna
gain G0 and thermal noise N0, and d is the distance from the RRH to the user.
Pu is the transmission power per user. The MRRH is always kept on to maintain
coverage. The algorithm runs in the BS cloud on the GCC where all information
(e.g., traffic load) about other RHHs is present. At constant time intervals of 1
hour, the algorithm is invoked where the utility of all the SRRHs is calculated
and the SRRH with the lowest utility first is then tested for switching OFF.
The test involves checking if the SRRH traffic can be offloaded to neighbouring
SRHHs or to the MRRH while maintaining the minimum datarate. If the traffic
can be offloaded, then offloading is perfomed and the SRRH is then switched
OFF. If the offloading can not be perfomed due to violation of QoS or due to
not enough resources, the SRRH is kept active.
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Algorithm 2. Greedy RRH switch off algorithm
Input: RRH traffic load information
Output: Number of switched OFF SRRHs
Define Roff as a set of switched OFF RRHs.
Define Ron as a set of active RRHs
for each RRH do

Calculate the RRH utility function F(ρj)
end
Sort RRHs by their increasing utility function
Test the lowest utility RRHj for switching OFF
while j �= N do

if RRHj can be offloaded then
offload RRHj traffic
switch OFF RRHj

Roff = Roff + {RRHj}
end
else

do not offload RRHj traffic
keep RRHj on
Ron = Ron + {RRHj}

end
j = j + 1

end

4 Simulation Results and Discussion

4.1 Parameter Settings

To analyse the performance of the proposed scheme, a simulation layout of one
MRRH overlaid with 10 small cells is considered. Bandwidth of 10 MHz was
considered with up to 50 users randomly generated within the MRRH and up to
5 users within the SRRH. All results using the proposed scheme are compared
with the baseline distributed LTE-A system which comprises of distributed BSs
with 10 individual BBU processing servers for 10 cells. The users are allocated
PRB in a proportional-fair manner. Adaptive modulation and coding (AMC)
scheme is used to adapt to the changing channel conditions. As the simulation
runs, the values of Ant, Mod, R were captured and mapped into processing
requirements and loaded into the bin packing scheme to reduce the number
of servers M . For calculating the power consumption, the power factor used
is δ = 40 GOPS/watt and Pstatic = 200 GOPS as in [17]. Other simulation
parameters are shown in Table 1.

4.2 Results Evaluation

Figure 3 shows the power consumption of both schemes for different traffic loads.
The results show that for both schemes, as the traffic load increases, the power
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Table 1. Parameters used in the simulations.

Parameter Value

Bandwidth B 10 MHz

No. of antennas Ant 2

Modulation mod 2, 4, 6 bits

Coding rate Cod 1/3-1

Number of MRRH 1

Number of SRRH 10

Number of users per MRRH up to 50

Number of users per SRRH up to 5

MRRH radius 500 m

SRRH radius 40 m

MRRH transmission power 46 dBm

SRRH transmission power 30 dBm

Inter-BS distance >1 km

BS antenna gain G0 16 dBi

Noise Power N0 −141 dBm/Hz

Pathloss Exponent, α 4

power factor, δ 40 GOPS/watt
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Fig. 3. Power consumption versus traffic load.
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consumption increases. The proposed scheme consumes less power compared to
the baseline since the proposed scheme combines RRH switch off scheme at the
radio side with BBU reduction scheme at the BS cloud which both significantly
reduce the overoll system power consumption. The proposed scheme saves up to
44% and 78% of power at during low traffic and peak traffic respectively as
compared to the baseline scheme.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Traffic load

St
at

is
tic

al
 m

ul
tip

le
xi

ng
 g

ai
n

Fig. 4. Statistical multiplexing gain.

Figure 4 illustrate the statistical multiplexing gain for increasing traffic load
which is calculated as the ratio of number of BBU servers used by the baseline
scheme to those used by the proposed scheme. The graph shows that at low
traffic period the multiplexing gain is 5 which means the baseline uses 5 times
the number of BBUs compared the proposed scheme. During peak traffic, the
multiplexing gain is 1.4 which means the baseline uses 1.4 times the number
of BBUs as the proposed scheme due to more traffic being proposed for both
schemes.

5 Conclusion

This paper presents an energy efficient scheme for reducing energy consumption
in C-RAN by switching off remote radio heads (RRHs) using a greedy algorithm
and also switching off idle BBUs using the first fit decreasing (FFD) bin packing
algorithm. The number of RRHs and BBUs are minimized by matching the right
amount of baseband computing load with traffic load. The proposed scheme
saves up to 44% and 78% of power during low traffic and peak traffic periods
respectively. The proposed scheme will be extended to include the separation of
data and control signalling to further minimize energy consumption.
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