
Robust Spectral-Temporal Two-Dimensional
Spectrum Prediction

Guoru Ding1,2(B), Siyu Zhai2, Xiaoming Chen2, Yuming Zhang2,
and Chao Liu2

1 National Mobile Communications Research Laboratory,
Southeast University, Nanjing, China

dingguoru@gmail.com
2 PLA University of Science and Technology, Nanjing, China

13222759316@163.com, chenxm23732@126.com, zhangym 2000@163.com,
liuchao20121601@163.com

Abstract. With the development of mobile network, the limited spec-
trum resources are being running out of. Therefore, there is a harsh need
for us to be able to know the current spectrum state as well as predict the
future spectrum state. Though a number of studies are about spectrum
prediction, some fundamental issues still remain unresolved: (i) the exist-
ing studies do not account for anomaly data, which causes serious perfor-
mance degradation, (ii) they do not account for missing data, which may
not hold in reality. To address these issues, in this paper, we develop a
robust spectral-temporal spectrum prediction (R-STSP) framework from
corrupted and incomplete observations. Firstly, we present data analytic
of real-world spectrum measurements to analyze the impact of anomalies
on the rank distribution of spectrum matrices. Then, from a spectral-
temporal spectrum perspective, we formulate the R-STSP as a matrix
recovery problem and develop an optimization method to efficiently solve
it. We apply the formulated R-STSP to real-world VHF spectrum data
and the results show that R-STSP outperforms state-of-the-art schemes.

Keywords: Spectrum prediction · Anomaly data · Missing data ·
Matrix completion and recovery

1 Introduction

The rapid development of mobile network is running out of the limited spec-
trum resource, which is a signal that we need more probable spectrum usage to
adapt to this trend [1,2]. To achieve this goal, we need to know the current spec-
trum state as well as predict the future spectrum state. Spectrum sensing helps
us determines the current spectrum state using various signal detection meth-
ods [3–5], while spectrum prediction gives us the future spectrum data. Spec-
trum prediction’s applications in wireless networks has many merits, for example,
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it increases system’s throughput of spectrum access and reduces the time delay
in spectrum sensing and so on.

As is mentioned above, spectrum sensing is usually used to obtain spectrum
state. However, due to the limitations of hardware processing speed, the cost of
equipment and network deployment cost in real world, we can just only get sparse
spectrum data on time, frequency or space through spectrum sensing. On the
other hand, the measured spectrum data analysis both at home and abroad [6,7]
indicates that any spectrum data does not exist in isolation. They have a close
correlation in time, frequency and space dimensions. The sparsity of spectrum
sensing data sample caused by the limitations of hardware processing speed, the
cost of equipment and network deployment cost can be overcome by fully mod-
eling, analyzing, mining and using the correlations in all dimensions and then
predicting spectrum state. The current domestic and international researches on
spectrum prediction have made staggered results. The early researches on spec-
trum prediction mainly focused on the time domain. With the deepening of the
data analysis based on real-world spectrum measurements, spectrum correlation
phenomenon (the relationship between different channels of spectrum) gradually
attracts researchers’ attention [8,9] and spectrum prediction algorithm based on
spectrum’s frequency domain correlation also constantly emerges. The related
researches can be found in [6,10,11].

There are mainly three challenges in spectrum prediction, namely anom-
alies, measurement errors and missing data. Anomalies and the wrong data are
common, for the error in the process of electromagnetic wave transmission is
unavoidable [12]. Data missing is also inevitable for three reasons. Firstly, the
data missing in the transmission process is normal [13]. Secondly, the limita-
tion of measuring equipment brings the fact that it is unrealistic to measure
all the spectrum bands [14]. Thirdly, the existing measurement algorithm is not
perfect [15].

In this paper, we consider the spectrum state matrix. The columns corre-
spond to time slots and the rows correspond to spectrum bands. Next, we ana-
lyze real-word spectrum data to excavate the correlation structure between time
slots and spectrum bands. Then from a two-dimensional perspective, we regard
spectrum prediction as a matrix recovery optimization problem from incomplete
and corrupted historical data. We develop an alternating direction optimization
method to solve it. Finally, we apply the algorithm to real-world VHF spectrum
data and the results show that it outperforms state-of-the-art schemes.

2 System Model

As stated before, we consider a spectrum matrix X ∈ RF×T . The rows corre-
spond to frequency bands and the columns correspond to time slots. Each ele-
ment xf,t, f ∈ {1, ..., F}, t ∈ {1, ..., T} represents the spectrum state in the t-th
time slot on the f -th frequency band. Each row xf,. := [xf,1, xf,2, ..., xf,T ], f ∈
{1, ..., F} represents the state evolution of T successive time slots over the f -th
frequency band. Each column x.,t := [x1,t, x2,t, ..., xF,t]′, t ∈ {1, ..., T} represents
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Fig. 1. System model.

the state distribution of F frequency bands in the t-th time slot. As is shown
in Fig. 1, the abscissa axis represents time slot, the vertical axis represents fre-
quency band. The data from column 1 to column T −1 is historical data, among
which there exist anomaly data and missing data. What we do is to predict the
data in column T from a spectral-temporal 2D perspective by exploiting the rela-
tionships among historical data and predicted data. To achieve this objective,
there are two critical issues:

• There are many factors contributing to practical spectrum data matrices,
including signals, anomalies and noise.

• Unlike the conventional matrix completion or interpolation that elements are
missing uniformly and randomly, an entire column of the matrix is known in
the case of spectrum prediction.

As for the first issue, we consider the original dataset as a mixture of all
these effects and then decompose the original spectrum matrix into a low-rank
component, a sparse component and a dense noise component, which capture
the major effects of signals, anomalies and noise, respectively. As for the second
issue, we utilize some essential properties of spectrum matrices and add the time
series forecasting into the matrix interpolation.

3 Analysis of Datasets

3.1 Real-World Spectrum Measurement Dataset

As shown in Fig. 2, in this paper we use a software defined radio NI USRP
N2920 to perform real-world spectrum measurement in the basement of a 10-floor
building. The frequency band spans from 50 MHz to 75 MHz with a frequency
resolution 25 kHz. In total 1000 bands are measured and each band is measured
100 times. Therefore, the data size is 1000×100. The spectrum measurement in
terms of power spectral density (dbm/25 kHz) is shown in Fig. 3.
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Fig. 2. A real-world spectrum measurement platform.

Fig. 3. The spectrum measurement data across various frequency bands and time slots.

3.2 Rank Analysis

From the knowledge of linear algebra we know that a higher correlation of a
matrix generally means low rank. For each data matrix, we first make a process-
ing by subtracting from each row its mean value. Then we apply singular value
decomposition (SVD) to analyze the rank distribution of all mean-centered
spectrum data matrices. In Fig. 4, we plot the normalized singular values in
a descending order for VHF bands and for both the cases with and without
anomalies. For comparison, we also analyze an i.i.d Gaussian random signal
dataset.

From Fig. 4, it is suggested in the case of spectrum data matrices without
anomaly, the energy is always contributed by the top several singular values in
measured practical data matrices, which reflects the fact that practical spectrum
data matrices show approximate low-rank structure, and this is quite different
from the Gaussian random signal dataset. In the case with anomaly, we use the
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Fig. 4. Normalized singular values of spectrum datasets.

standard anomaly injection method [16] and inject anomalies to a portion of
the entries in the original matrices. As a result, the presence of anomalies has a
destructive effect on the approximate low-rank structure.

4 Problem Formulation and Algorithm Design

4.1 Problem Formulation

We use xf,t to express the measured spectrum data in the f -th frequency band
over the t-th time slot, then we have

xf,t = zf,t + af,t + vf,t, f = 1, ..., F, t = 1, ..., T, (1)

where zf,t denotes the signal of interest, af,t denotes the anomaly component
and vf,t denotes the additive noise component. As for zf,t, because the signal of
interest is not always present, so we have

zf,t = hf,t · pf,t (2)

where hf,t is a function indicating the presence or absence of the signal and pf,t

is the signal strength in the t-th time slot and the f -th frequency band. If the
signal is present, then hf,t = 1. If the signal is absent, then hf,t = 0.

Introduce the matrix XT := [xf,t], ZT := [zf,t], AT := [af,t], VT := [vf,t]
∈ RF×T , then Eq. (1) can be further rewritten as follows:

XT = ZT + AT + VT (3)

where ZT represents a low-rank signal component, AT a sparse anomaly compo-
nent and VT a dense noise component. The low-rank property of the signal has
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been observed from Fig. 4. The introduction of dense noise component makes the
low-rank structure of ZT + VT approximate and the injection of sparse anom-
aly component AT makes the approximate low-rank structure does not hold at
more.

To further model missing data, introduce the operator PΩT
(·), which sets the

entries of its matrix argument not in ΩT to zero, and keeps the rest unchanged,
then the spectrum state data can be further given as

PΩT
(XT ) = PΩT

(ZT + AT + VT ) (4)

As is stated before, the objective in this paper is to predict the data in
column (i.e.,x.,T ) from a two-dimensional perspective, based on the incomplete
and historical data PΩT−1(XT−1). Now this objective falls into the field of joint
(low-rank) Matrix Completion and (sparse) Matrix Recovery (MCMR).

4.2 Algorithm Design

Consider the fact that the spectrum data in the T -th time slots are completely
unknown, conventional MCMR methods cannot function well, so we first forecast
a few frequency bands of large evolution regularity f ∈ SLER. Specifically, for
any band f ∈ SLER, the forecast spectrum state is given as follows:

x̄f,T =

{
TSF (PΩT−1(XT−1)) f ∈ SLER

0 otherwise
(5)

where TSF stands for various time series forecasting functions. After studying
the evolution trajectories of TV and ISM spectrum, we find that there are always
several bands in each service that their spectrum evolution trajectories are highly
predictable.

Based on x̄f,t, the spectrum matrix for further processing is as follows:

PΩT
(X̄T ) =

[
PΩT−1(XT−1), x̄.,T

]
(6)

In addition, a natural estimator leveraging the low-rank property of ZT and
the sparsity property of AT attempts to fit the incomplete data PΩT

(X̄T ) to
ZT + AT in the least-squares error sense. Meanwhile, the estimator minimize
the rank of ZT measured by its nuclear norm ‖ZT ‖∗ and the number of nonzero
entries of AT measured by its l1 norm ‖AT ‖1. Therefore, we have

min
Z,A

1
2

∥∥ΓΩT
(X̄T − Z − A)

∥∥2

F
+ λ∗

T ‖Z‖∗ + λ1
T ‖A‖1, (7)

where rank-controlling parameter λ∗
T ≥ 0 and sparsity-controlling parameter

λ1
T ≥ 0. In order to provide a effective resolution to the above problem, we

face the following challenges: (i) This is a non-smooth optimization problem due
to the fact that the nuclear and l1 norms are not differentiable from the very
beginning; (ii) The scale of the problem can easily become very large since the
quantity of optimization variables 2 ∗ F ∗ T grows with time.
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To address the above challenges, first we introduce a constraint that
rank(Ẑ) ≤ r, where is the estimate obtained in Eq. (6) and r is the upper bound
rank of the signal part in Eq. (2). Next we factorize the matrix as Z = PQ′

through a bilinear decomposition. P and Q are F ×r and T ×r matrices, respec-
tively. Furthermore, consider the following alternative property of the nuclear
norm [17,18].

‖Z‖∗ := min
P,Q

1
2
{‖P‖2F + ‖Q‖2F }, s.t.Z = PQ′ (8)

Apply Eq. (7) to Eq. (6) and we have

arg min
P,Q,A

1
2

∥∥ΓΩT
(X̄T − PQ′ − A)

∥∥2

F
+

λ∗
T

2
{‖P‖2F + ‖Q‖2F } + λ1

T ‖A‖1, (9)

Obviously, on condition that rank(Ẑ) ≤ r, the separable Frobenius-norm
regularization in Eq. (8) does not damage the optimality relative to Eq. (6). So
far, the optimization in Eq. (8) can be solved by the standard method introduced
in [19].

5 Experiment Results

In this section, spectrum measurements are used to validate the effectiveness
of the proposed robust spectral-temporal two-dimensional spectrum prediction
(R-STSP) scheme over the joint (two-dimension) spectral-temporal spectrum
prediction (J-STSP) scheme [20].

We quantify the spectrum prediction performance in terms of prediction
error. Root mean square error (RMSE) in dB is used to quantify the predic-
tion error, which is defined as:

RMSE(T ) = 10 log10(
||Pω̄T

(ẑT − zT )||22
||Pω̄T

(zT )||22
), (10)

where zT and ẑT are the ground-truth and predicted spectrum data in the T -th
time slot, respectively. ω̄T , the complementary set of ωT , contains the indices
of missing/incomplete observations, while the corresponding sampling operator
Pω̄t

(·) sets the entries not in ω̄t to zero, and keep the rest unchanged.
Figure 5 shows the cumulative distribution functions (CDFs) of RMSE in

dB for the two schemes. It shows that: (i) the prediction performance of both
J-STSP and R-STSP decrease with an increasing percentage of anomaly data;
(ii) R-STSP always outperforms the J-STSP under different configurations;
(iii) the prediction performance of the proposed R-STSP is improved with a
decreasing percentage of anomaly data.
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Fig. 5. Illustration of RSTSP with anomaly data.

6 Conclusion

This paper considered spectrum prediction as a matrix recovery optimization
problem from incomplete and false historical data. We developed an optimization
method to solve it. Finally, we apply the algorithm to real-word VHF spectrum
data and the results show that R-STSP outperforms state-of-the-art schemes.
One future work is to further develop online algorithms to perform real-time
prediction and reduce the delay.
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