Virtual Memory Based Radar Display
and Control System

Zengshan Tian, Mingxiao Wang(g), Mu Zhou, and Feng Qiu

Chongqing Key Lab of Mobile Communications Technology,
Chongqing University of Posts and Telecommunications,
Chongging 400065, People’s Republic of China
{tianzs, zhoumu}@cqupt. edu. cn, wangmx199111@163. com,
giufeng2245@outlook. com

Abstract. Since the graphics processor of common X86 platform does not
support the display function of multi-layer graphics, this paper proposes to
combine the Qt Graphics-view framework with OpenGL pixels operation
function and utilizes the graphics memory under the Linux system to achieve the
layered and efficient display based on the radar information. The proposed
approach can effectively realize the main functions of radar display and control
system, including the radar Plan Position Indicator (PPI) display, target glint in
warning area, and Automatic Identification System (AIS) target management
and display. The experimental results prove that the proposed approach has the
advantages of high efficiency, smooth image update, and low hardware
requirements. In addition, the proposed approach has been successfully applied
to a typical shipborne radar navigation system.

Keywords: Radar - PPI display - Qt - OpenGL - AIS

1 Introduction

Since the radar system has the advantages of low environmental requirement and target
detection with real-time capacity, high positioning accuracy, and long ranging property,
it is indispensable for ship navigation. The main features of modern shipborne navi-
gation radar display systems are the digital information processing, high-performance
information display, and friendly interactive experience [1]. Most of the implementa-
tion platform is based on the existing System on Chip (SOC) platform or embedded
platform by selecting the Advanced RISC Machines (ARM) as the core. As one of the
most important parts for human-computer interaction in the radar system, the radar
display and control terminal undertakes the fundamental tasks of original radar image
display, radar control, and tracking target display. In addition, the modern radar can
integrate the radar images with the Global Position System (GPS), Automatic Identi-
fication System (AIS), compass, and log to guarantee the well navigation performance.

Since the radar Plan Position Indicator (PPI) display involves a large amount of
image data with high refresh rate, the radar display terminal requires high-grade pro-
cessor and graphics card. Many research institutes mainly focus on the advanced
embedded processors combined with specialized embedded graphics processor, which
generally has multiple images display layers and 2D/3D graphics acceleration. The

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
X.-L. Huang (Ed.): MLICOM 2016, LNICST 183, pp. 383-392, 2017.
DOLI: 10.1007/978-3-319-52730-7_39

384 Z. Tian et al.

three typical types of software development approaches used for radar display terminal
are summarized as follows. (1) Based on the embedded Linux system, the advanced
GUI development environment, like the Qt and GTK +, is adopted to develop the
display and control interface and render the secondary radar information, and mean-
while the Framebuffer technology is used to draw the radar original image through the
direct operation of video memory [2]. (2) The third-party plug-in which supports
hardware acceleration, like the OpenGL and DirectFB, is combined with the GUI
development environment, like the echo display method based on OpenGL texture
mapping [3] and DirectFB library, to write driver for the sake of achieving the image
layering and hardware acceleration [4]. And (3) On the X86 platform, the DirectDraw
technology based on the Windows system is adopted to achieve the multi-layer image
display and acceleration, by using the Qt or VC++ to develop the radar interface. For
example, the direct video technology with Visual C++ and DirectX programming
method is used to realize the radar image display [5].

Another common approach to develop the radar display and control system is to
select the Field Programmable Gate Array (FPGA) as the main controller, with an
external Video Graphics Array (VGA) conversion chip and Digital Signal Processor
(DSP) chip or ARM processor to process the radar data, and then rely on the FPGA
processing of image data fusion to display the radar images [6].

Aiming at the deficiencies of the approaches mentioned before, this paper proposes
to combine the Qt Graphics-view framework with OpenGL hardware acceleration to
achieve the layered and efficient display for radar information. This approach is based
on the X86 platform with low configuration, and does not require the graphics pro-
cessor to support the multi-layer image display function on hardware. Since the
graphics memory, Qt multi-thread, and OpenGL pixel operation interface are used to
develop the cross-platform radar display and control software, this approach can
effectively compensate the radar display and control terminal development vacancies
on the low configure X86 platform based on the Linux system.

2 Rendering of Radar Images

2.1 Qt Graphics-View Framework

The Qt Graphics-view framework in Fig. 1 can manage and display a large number of
custom 2D graphic items and interact with each other by using the view component to
visualize the graph and support the scaling and rotation. It includes event propagation
architecture, with the ability of accurately doubling the precision interaction with the
items in scene. The UI controls can be easily embedded in the QGraphicsScene and use
the Qt’s QSS to separate the interface beautification and software code which can be
used to customize many GUI elements.

2.2 OpenGL Pixels Operation Interface

The OpenGL is the interface of developing high-quality image in SGI’s graphics
workstation and has become a representative 3D graphics interface [7]. The OpenGL

Virtual Memory Based Radar Display and Control System 385

QGraphicsScene

QGraphics || QGraphics
View 1 View 2

Fig. 1. Qt graphics-view framework.

provides three basic functions of processing image data, namely the frame buffer pixel
read function glReadPixels, frame buffer pixel write function glDrawPixels and frame
buffer pixel duplicate function glCopyPixels. The glDrawPixels reads a rectangular
array of pixels from the processor memory and writing the data to frame buffer at the
raster position specified by glRastePos* [8]. During the process of pixel transfer from
the memory to frame buffer, the glPiex]Zoom is used to set the image scaling and
rotation and glPixelStore is used to set the display range of image.

2.3 Radar Image Display

Since most of the Intel integrated graphics on the X86 platform do not support the
image layered display, the directly operating frame buffer to realize the radar image
display will not benefit the drawing of radar secondary information, like the AIS
targets, ARPA targets, and navigation routes. The proposed approach is based on the
characteristics of Qt Graphics-view framework which can coexist with the OpenGL by
using the image layering method and creating the virtual graphics memory, to realize
the raw radar data drawing. The implementation steps are described as follows.

Step 1: Create the QGLWidget in the main window and use the member function
makeCurrent to set its RenderContext to be the current value.

Step 2: Create the custom view and scene object which are inherited from the
QGraphicsView and QGraphicsScene respectively, and then set the QGLWidget as the
window of the custom view object. The background RenderContext is set to be the
OpenGLContext, with the purpose of avoiding the CPU rendering and improving the
efficiency of drawing.

Step 3: Create the virtual memory in the custom view object by a two-dimensional
array, namely radar video buffer in processor memory, which size is 1024 x 1024 x 4
bytes. We need to initialize it with the background color and modify the array to
implement the real-time change of radar image. The subsequent drawing of radar image
only requires changing the pixel values in virtual memory area, which is similar to the
process of the direct operation of memory.

Step 4: In the function drawBackgroud of custom view object, use the QPainter
member function beginNativePainting and endNativePainting to make the pure
OpenGL rendering, and then use the function InitGL, ResizeGL and PaintGL to
execute the OpenGL operations.

Step 5: In the function PaintGL, use the OpenGL function glDrawPixels to draw
the virtual memory data into the screen as a background layer.

386 Z. Tian et al.

Step 6: Select the azimuth circle, heading line, AIS targets and tracking targets as
QGraphicsltem added to the custom scene object, and then use the function setZValue
to set the items’ display order.

Our system uses the GL_RGBA format when calling the function glDrawPixels
and the data format are GL_UNSIGNED_BYTE because using the same image format
and data format with frame buffer can reduce the workload of OpenGL implementation.
When zooming in the radar image, we use the function glPixelStore* to set the cor-
responding parameters in order to capture the image display area, and meanwhile set
the scale factor and display position on the screen by the function glPixelZoom and
glRasterPos*.

3 Design of Radar Display and Control System

Our system relies on the Linux system to receive the raw radar data which are pro-
cessed by the FPGA, and then parse and display the data. In addition, it is also
responsible for the deployment and control of the entire radar system, secondary
information display, recording and managing the AIS targets, and providing a graphical
interactive interface.

3.1 Interface Design

Our system combines the GPS, AIS, compass, and log to enhance the function and
enrich the display content. The display and control system interface includes the radar
display area, information monitoring area, display control menu, function control
menu, and install menu. Among them, the information monitoring area overlaps the
menu area and is switched by the control button for the sake of ensuring that the
interface is concise. The interface is designed in Fig. 2.

nuaw

onuod Aedst
nuow [[ejsur

alarm
{ monitoring |

L

eare SuLojruour
uoneIojul

switched by button

Radar display area

eore joued uonerodo

1,2, 3, 4 arca is radar parameters display area

Fig. 2. Radar display and control interface.

Virtual Memory Based Radar Display and Control System 387

The radar display area shows raw radar data, tracking targets, and AIS targets. The
parameters monitoring area shows the ship information, like the latitude, longitude,
course, and speed, while other ship monitoring area shows the tracking and AIS targets
information, like the name or label, Maritime Mobile Communication Service Identifier
(MMSI), speed, heading, Time to Closest Point of Approach (TCPA), and Distance to
Closest Point of Approach (DCPA). The alarm monitoring area shows all the types of
alarm information in a real-time manner. The display control menu contains the color
choices, trail display, vector line length, brightness adjustment and adjustment buttons.
The function control menu contains the warning area selection, route points, TCPA,
DCPA and function setting buttons. The install menu is used for the radar installation
and requires the password for entering.

3.2 Radar Video Display

The conventional radar PPI display depends on the afterglow effect of fluorescent
material to display the echo signal [9], whereas the modern radar is based on the raster
scanner. Since the echo signal is described by polar coordinates, it is required to perform
the coordinates-transformation before drawing. Our system combines the coordinates
index look-up table method and uniform motion model [1] to exhibit the relations
between the raw radar data and drawing positions in the virtual memory [10]. The polar
coordinates represent the target position with the distance and azimuth (p,). The
conversion from the polar coordinates into rectangular coordinates (x, y) is shown in (1).

{x = psind (1)

y = pcosf

Where 0 is the angle between the target and ship’s heading.

The purpose of coordinate index look-up table method is to calculate each point’s
corresponding quantization angle and display radius based on its two-dimensional
index in the virtual memory, and then create the two-dimensional coordinate conver-
sion table. Based on (2), we first create a two-dimensional data list Index[r][0)
(0 <r<MaxRng, 0 < 0 <MaxAzi), where MaxRng is the maximum display radius and
MaxAzi is the maximum quantization angle, and then use (3) to calculate each point’s
index idx and store it into the list Index. When drawing the radar data, we need to look
up the table according to its polar coordinates to obtain the corresponding index in the
virtual memory, and assign a color value.

ro= \/<(x1—R)2—|—(y1—R)2> 2)
0 = atan(x; — R,y; — R) * MaxAzi /2=

where R is the half of the height of screen.

idx = y12R +xi (3)

388 Z. Tian et al.

Since the uniform motion model selects the true motion of radar operation as the
off-center relative motion, it is not necessary to calculate the two-dimensional coor-
dinate transformation table when the observing mode is changed. The size of the
two-dimensional coordinate index table should be doubled from the size of actual
screen by the reason that the radar display range is doubled under the off-center
condition. Thus, when the radar is off-center in anywhere, we can obtain the actual
screen location of each echo point from the look up table with simple
coordinates-transformation.

The radar display area of our system is a square area with the size of 1024 x 1024
pixels, and the actual PPI display area is a circle with the radius is equaling to 500.
After the raw radar data are parsed, we store the range, angle, index, and video data into
the structure temEchoData as defined below.

Typedef struct temEchoData{
quintlé range;
quintl6 angle;
quintl6é packetNum;
quint8 echo[1000];
}EchoData;

Since the angle of two adjacent frames echo data are not fixed in FPGA sampling,
we use the angle difference of two frames echo data to draw a sector. Our system
selects the previous frame echo data as the actual drawing data, and selects the current
frame data’s angle as the end angle of the sector drawing. In addition, the refresh rate of
the image is determined by the division angle means the radar image span of each
drawing, and our system choose 6°. When the division angle is large, both the refresh
rate and hardware consumption will be low, but the image will not be smooth. When
the division angle is little, the image will be smooth, but the hardware consumption will
be high.

3.3 Radar Warning Area Alarm

When using the shipborne navigation radar, the warning area alarm is a convenient and
practical function, which achieves the automatic detection and alarm in the designated
area and reduces the workload of radar operator. We aim to detect whether there are
targets in warning area, and make the warning area targets glint when the radar image is
in real-time refresh.

Since the radar image display system uses the virtual memory combined with angle
dividing, the blinking effect of targets can be achieved by changing target content in the
virtual memory between two adjacent refresh of radar images. However, the significant
attention should be paid when the target content is changed since the logical rela-
tionship between the target content and actual echo data is used to modify the virtual
memory.

Virtual Memory Based Radar Display and Control System 389

3.4 AIS Targets Management

The modern common radar is limited by the hardware constrain, and meanwhile the
number of automatic tracking target based on the raw radar data is generally less than
100 and error tracking occurs due to the existence of noise. As a new type of digital
navigation system, the AIS broadcasts to the nearby ships and coast stations via Very
High Frequency(VHF) and enables the nearby ships and coast stations to master the
dynamic and static information of ships which greatly increased the accuracy of the
target identification and tracking.

The AIS target management mainly includes the AIS target information extraction,
target dynamic refresh, alarm detection, display position locating, and quantity man-
agement. Considering the characteristics, like the large amount of calculation about the
AIS target data, frequent calculation of display position, and stability of refresh time,
our system defines two different coordinate system when calculate the AIS target screen
coordinates. The first one is the rectangular coordinate system between the AIS target
and the corresponding ship, and while the second one is the screen coordinate system
between the screen and the corresponding ship.

The AIS target information is processed with fixed time, to create a QHash table to
store the parsed data of AIS information with MMSI number as index. During the
processing of AIS target information, we refresh the AIS target state, calculate the
alarm information relevant to the corresponding ship, update the historical points, and
analyze whether the AIS target is lost.

Since the number of AIS targets in the harbor or busy waterway is large, handling
all the AIS targets and displaying them on the screen will cause difficulties and waste
hardware resources. To solve this problem, we limit the number of AIS targets by
removing the long-range AIS targets based on the distance between the AIS targets and
the corresponding ships. The steps of AIS target screening is as follows.

Step 1: By assuming that the screened number of AIS targets is k, we create two
arrays, namely Rng[k] and Mmsi[k], as the sorting containers.

Step 2: We select k targets from AIS targets storage list and store them into array
Rng in ascending order of distance, and then store the MMSI number of the corre-
sponding objects into Mmsi.

Step 3: Based on the AIS targets storage list, if the distance is less than the first
element in Rng, we ignore it, and otherwise insert it into Rng with the corresponding
position, remove the minimum, and insert the target’s MMSI number into Mmsi with
the corresponding position. Finally, the MMSI number saved in Mmsi is the AIS
targets index to be removed.

4 Test Results

In our testing, the hardware platform is the Celeron 2 GHz CPU, 1 GHz memory, intel
integrated graphics and flash 8G hard disk.

The control and display system is developed in Ubuntul2.04 and the test system is
TimeSys Linux. The Ethernet cable is selected as the transmission channel between the
baseband process board and display and control terminal. The terminal and baseband

390 Z. Tian et al.

process board are separated for the sake of facilitating the miniaturization of radar
display terminal.

4.1 Real-Time Performance Testing

The system operation interface is shown in Fig. 3. The yellow and gray images rep-
resent the actual target and clutter in the circular display area respectively. The antenna
rotation period is 2.5 s and image refresh angle is 6°. The image refreshes 24 times per
second with smooth running effect. The number of echo data to be processed reaches
the millions level. The system is able to perform coordinate conversion, drawing
display, and target detection and trail control, as well as respond quickly to a variety of
radar operations.

Fig. 3. Operation interface of radar display and control system.
In the Qt environment, the time consumption of rendering the 1024 x 1024 pixels

is shown in Table 1. From this table, we can find that the drawing efficiency of
OpenGL is higher than other methods and it’s fully meet the real-time requirements.

Table 1. Time consumption by different drawing approaches

Approaches QPainter | QGraphicsltem | OpenGL

Time consumption(ms) | 134 625 15

4.2 Alarm Function Testing

The radar warning area function is to detect the targets and glint alarm automatically
based on the original echo image. Our system detects the values of virtual memory, and
when the warning area appeared targets than glint alarm immediately, and there is no
false alarm or leak detection. Figure 4 shows the normal display image after delimiting
the warning area surrounded by the white line. Figure 5 shows the image under the
condition that the warning area targets are hided. Our system achieves the glint effect of
targets by rapidly alternating the image refresh.

Virtual Memory Based Radar Display and Control System 391

Fig. 4. Normal display images of warning area.

4.3 AIS Targets Screening Testing

In this section, we simulate 10 AIS targets to test the AIS targets management and
screening function. The display interfaces before and after screening are shown in
Fig. 6. In the figure, the green triangle is the AIS target, while the triangle surrounded
by a box is the selected AIS target. When setting the number of AIS display targets as
4, we can find our system reserves four AIS targets which are closest to the corre-
sponding ships. The distances from AIS targets to the corresponding ship before and

after scanning are shown in Table 2.

Fig. 6. AIS targets display before and after scanning.

Table 2. Distance from AIS targets and ship before and after scanning

Target IDs | 1 2 3

4

Before(Nm) | 3.226 | 3.698 | 4.267
After(Nm) |3.176|2.873|2.774

4.902
2.901

392 Z. Tian et al.

5 Conclusion

Since the hardware graphics processor on the common X86 platform does not support
the multi-layer image display, this paper proposes a new radar image drawing method
that selects the graphic memory combined with the Qt Graphics-view framework and
OpenGL hardware acceleration function to achieve the real-time radar image display,
glint alarm in warning area, and AIS targets management and integrated display. This
method does not require the graphics processor to support the multi-layer image dis-
play, and meanwhile it has the advantages of cross-platform, low hardware require-
ments and well display performance. Based on the extensive testing result, this method
is proved to be able to work well under the condition that the refresh rate of radar image
equals to 36 per second.

Acknowledgments. This work was supported by the Program for Changjiang Scholars and
Innovative Research Team in University (IRT1299), National Natural Science Foundation of
China (61301126), Special Fund of Chongqing Key Laboratory (CSTC), and Fundamental and
Frontier Research Project of Chongqing (cstc2013jcyjA40041, cstc2015jcyjBX0065).

References

1. Wei, B., Guo, Y., Mo, H.: The realization of echo displaying for marine navigation radar
under high-rotating speed and multiple operating modes. Sci. Technol. Eng. 13(17), 4962—
4967 (2013)

2. Ren, Q., Yang, J.: Implementation and application of FrameBuffer in radar display. Electron.
Sci. Technol. 22(6), 61-63 (2009)

3. Zhang, P.: A method of radar echo display based on OpenGL. Shipboard FElectron.
Countermeasure 34(3), 39-42 (2011)

4. Liang, W.: Research on the DirectFB graphics engine transplant based on BCM7241
platform. Comput. Telecommun. 4, 53-55 (2015)

5. Wu, W.: Design and implementation of radar control system software on Direct3D under
windows. Sci. Technol. Inf. 1, 88-89 (2014)

6. Ying, S., Zhang, X.: A radar display terminal based on a partial-screen-updating method. In:
IEEE International Conference on Embedded Software and Systems Symposia, pp. 28-31
(2008)

7. He, Y., Zhang, G., Zhang, Q.: Design and simulation of radar terminal display based on
OpenGL. Informatization Res. 38(2), 15-18 (2012)

8. OpenGL Architecture Review Board, Dave, S., Mason, W., Jackie, N., Tom, D.: OpenGL
Programming Guide(Version 4). Posts & Telecom Press, Bei Jing (2005)

9. Fan, W.: An efficient algorithm for radar PPI display. Mod. Radar 37(2), 4145 (2015)

10. Li, B., Liu., D.: Research and realization of coordinate conversion in radar video display. In:
Ninth International Conference on Computational Intelligence and Security, pp. 277-279
(2013)

	Virtual Memory Based Radar Display and Control System
	Abstract
	1 Introduction
	2 Rendering of Radar Images
	2.1 Qt Graphics-View Framework
	2.2 OpenGL Pixels Operation Interface
	2.3 Radar Image Display

	3 Design of Radar Display and Control System
	3.1 Interface Design
	3.2 Radar Video Display
	3.3 Radar Warning Area Alarm
	3.4 AIS Targets Management

	4 Test Results
	4.1 Real-Time Performance Testing
	4.2 Alarm Function Testing
	4.3 AIS Targets Screening Testing

	5 Conclusion
	Acknowledgments
	References

