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Abstract. The majority of existing studies on power control in cogni-
tive radio networks focus on maximization of signal-to-interference-noise
ratio (SINR), while this paper firstly introduces the signal-to-leakage-
and-noise ratio (SLNR)-oriented power control to optimize throughput
in a cognitive radio network (CRN), where massive secondary connec-
tions (SCs) and a primary user (PU) coexist with each other sharing
the same frequency spectrum. Considering the practical challenge that
the channel gains between SCs and PU are typically uncertain, we intro-
duce a probabilistic interference constraint to protect the PU’s trans-
mission and reformulate it according to the Lyapunov ’s central limit
theorem (CLT). Then, we apply the convex optimization theory to solve
the intractable problem by excluding the probabilistic constraint. Espe-
cially, a novel algorithm based on the first-order Lagrangian is developed
where the dual variables are updated simultaneously. Furthermore, we
provide numerial results using different parameter, which display that
the proposed method can achieve higher throughput with much lower
computational complexity comparing with the existing literature.

Keywords: Cognitive radio network · Power control · Channel
uncertainty · Massive secondary connections · Signal-to-leakage-and-
noise ratio

1 Introduction

Spectrum resource is more and more crowded with the ever increasing demand
for wireless devices and applications. Pushed by the current severe situation,
cognitive radio (CR) has drawn much attention which is a promising technique
to improve the efficiency of spectrum utilization [1–3]. Specifically, in the under-
lay CR mode, a primary user (PU) shares the same spectrum with multiple
secondary connections (SCs) in a cognitive radio network (CRN) [4]. With this
concept, SCs can access the licensed spectrum used by the PU provided that
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

X.-L. Huang (Ed.): MLICOM 2016, LNICST 183, pp. 364–373, 2017.

DOI: 10.1007/978-3-319-52730-7 37



SLNR-Oriented Power Control in Cognitive Radio Networks 365

no harmful interference beyond tolerance is introduced. Therefore, it is widely
recognized that power control becomes essential for the whole system to mitigate
harmful mutual interference.

As an important issue in CR systems, power control has been studied exten-
sively in the literature. Specifically, in [5], a heuristic algorithm under OFDMA
has been proposed with an assumption that channel state information (CSI) is
perfectly available. However, SCs might have not been given priority to know
the signal characteristics of the PU, and thus have to rely on imperfect chan-
nel estimation. Consequently, power control for CRNs must account for channel
uncertainty [6,7]. In [6], the interference constraints as a probability in a power
control problem under the CR scene have been considered, where the uncertainty
has been in fading channels including shadowing and Nakagami fading. Power
control problems for OFDMA under channel uncertainty is also studied in [7].
However, to the authors’ best knowledge, all the existing studies of through-
put optimization are oriented towards the signal to interference plus noise ratio
(SINR), thus there are no closed form solutions on account of the coupled nature
of the corresponding optimization problem. Moreover, the majority of existing
studies consider the case that the number of SCs is small (up to tens) and they
do not explicitly address the mutual interference between SCs in the system.

In this paper, we propose a signal-to-leakage-and-noise ratio (SLNR)-oriented
power control method to promote the throughput capacity of the system. Mean-
while, the interference is mitigated between massive SCs (up to hundreds of
more) with channel uncertainty. Notably, the so-called SLNR is originally used
to design precoders in multi-user MIMO communications [8], where leakage refers
to the interference caused by the signal intended for a desired user on the remain-
ing users in a precoding scheme. Differently, in this paper, leakage means the
interference generated from one SC to all other SCs. As a result, SLNR is able to
measure how much power leaks to the other SCs in the CRN. More importantly,
due to the coupled interference nature of the corresponding throughput opti-
mization problems, existing solutions based on SINR do not have closed forms.
Differently, the proposed SLNR-oriented power control method in this paper can
circumvent the hurdles of SINR perfectly, which leads to a decoupled optimiza-
tion problem and allows an analytical closed form solution. This method has
been proved to be much more effective in this paper (see Sect. 4). Specifically,
there are three innovations below the part:

(i) Describe an optimal problem, where channel uncertainty and interference
constraints are jointly considered. Different from other power control meth-
ods, the throughput is promoted via a novel concept which optimizes the
sum SLNR instead of SINR.

(ii) Introduce Gaussian approximation based on the Lyapunov ’s central limit
theorem (CLT) to offer a conservative surrogate and propose an effective
power control algorithm based on first-order Lagrangian where the dual
variables are updated simultaneously.

(iii) Provide numerial results using different parameter, such as the transmit
power and the interference threshold of SCs, which display that our method
can outperform the state-of-the-art works in the literature.



366 L. Wang et al.

2 System Model and Problem Formulation

Consider a CRN where a PU and massive SCs utilize the same spectrum in the
underlay mode. The SCs are supposed to be randomly distributed around the
PU and N = {1, 2, · · · , N} is denoted as the set of all SCs. In addition, let pn

represent the transmit-power of the nth SC. Also, let pmax denote the maximum
transmit-power of SCs, Imax denote the maximum interference of SC, and Ip

max

denote the maximum interference of PU.
The channel gain gn,m between the nth and the mth SC is known accu-

rately [10]. Because SCs almost have no cooperation with PU through their
transmissions, it is hard to precisely estimated the gain gPU

n between them.
The SINR of the nth SC can be obtained as follows:

SINRn =
pngn,n

∑N
m=1,m �=n pmgm,n + σ2

0

, (1)

where pngn,n is the received signal power,
∑N

m=1,m �=n pmgm,n represents the
mutual interference of SCs. The whole throughput of the network is expressed
as the following formulation:

THsum =
N∑

n=1

log2 (1 + SINRn). (2)

The SLNR of the nth SC is defined as:

SLNRn =
pngn,n

∑N
m=1,m �=n pngn,m + σ2

0

, (3)

where the power of the desired signal component for SC n is given by pngn,n.
Meanwhile, the interference caused by SC n on SC m is given by pngn,m. There-
fore,

∑N
m=1,m �=n pngn,m represents the power leaked from SC n to all other SCs,

which is the concept of leakage for SC n. This lies the difference from SINR.
Due to the mutual interference, the constraints of SCs are expresses as fol-

lows:

N∑

m=1,m �=n

pmgm,n = I(−n) ≤ Imax, ∀n. (4)

In addition to this, the protection for the PU is taken into consideration.
That is to say, the sum interference from all the SCs to the PU is limited under
a certain threshold [10]. In order to clearly quantify this, Pr [.] is defined as the
outage probability, which can be written as the following expression:

Pr

[
N∑

n=1

pngPU
n ≤ Ip

max

]

≥ 1 − ε, (5)
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where gPU
n is a random variable which is independent and identically following

a distributed exponential and the mean is θ, and the threshold of the outage
probability is ε.

In this paper, in order to circumvent the hurdles of SINR, the following
SLNR-oriented problem is skillfully designed to achieve the purpose of through-
put maximization:

(P) max
p={pn}

N∑

n=1

SLNRn

s.t. C1 : pn ≤ pmax, ∀n

C2 :
N∑

m=1,m �=n

pmgm,n = I(−n) ≤ Imax, ∀n

C3 : Pr

[
N∑

n=1

pngPU
n ≤ Ip

max

]

≥ 1 − ε, (6)

where C1 restricts the transmit-power of SC, C2 guarantees that all the SCs
can coexist with each other and C3 focuses on the protection for the PU. As
is mentioned in the previous definition of SLNR, not only does SLNR promote
SCs benefit, but also can suppress the interference on others. In this way, the
performance should be greatly improved, where the motivation lies. For problem
(6), the challenge is that the channel gain is uncertain along with considering
massive SCs’ interference. In addition, there is not yet any satisfactory solution
to the open issue so far. In the following part, we introduce a feasible way to
tackle the difficulty with low complexity, which takes advantage of the convex
optimization theory.

3 Algorithm Design

In this section, an algorithm based on Lagrangian techniques is developed
to solve the problem P. The objective function (3) is rewritten by f(pn) =

pngn,n∑N
m=1,m �=n pngn,m+σ2

0
and obviously f(pn) is a concave function. According to [11],

the objective function is also a concave function. The original optimization objec-
tive can be converted into the following form:

(P∗) min
p={pn}

−
∑

n

f (pn) . (7)

Nevertheless, C3 does not meet the requirement of a convex function. Let
Xn = pngPU

n , and we assume that Xn independently follow the exponential
distribution with mean pnθ. Meanwhile, assume the sum of the whole random
variables is X =

∑
n Xn. Next, the original constraint is able to be changed into

the probability form as follows:

Pr

[

X =
∑

n

Xn ≤ Ip
max

]

≥ 1 − ε. (8)
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To deal with the constraint (8), the distribution of X is very important. To
study the distribution of X, we use the following Lemma 1 [12] to get Gaussian
approximation.

Lemma 1. The Lyapunov’s central limit theorem (CLT): If X1,X2, . . . , Xn are
independent of each other with mean E (Xk) = μk and variance D (Xk) = σ2

k >
0, we can obtain that

Zn =
∑n

k=1 Xk − ∑n
k=1 μk

Bn
∼ N (0, 1) (9)

and
n∑

k=1

Xk ∼ N

(
n∑

k=1

μk, B2
n

)

, (10)

where B2
n =

n∑

k=1

σ2
k.

Generally, X can be regard as a normally distributed random variable due
to massive connections. Approximately, the mean is m and the variance is σ2:

m ∼ ∑
i piθ

σ2 ∼ ∑
i (piθ)

2
. (11)

As a result, the following expression is a substitute product for (8):

P (p) = 1 − FN (Ip
max) =

1
2
erfc(

Ip
max − m√

2σ
) ≤ ε. (12)

where FN (·) is the cumulative distribution function (CDF) of a normal distrib-
ution and its mean is m, the variance is σ2. Moreover, erfc(z) = 2√

π

∫ ∞
z

e−t2dt.

For (12), the assumption is that f3 (p) = 1
2erfc( Ip

max−m√
2σ

) − ε. Inspired by the
scheme proposed in [10], the problem P can be decomposed into a sub-problem
P1 and (12):

(P1) min
p={pn}

− ∑

n
f (pn)

s.t. C1, C2 (13)

When a power allocation is given from P1, we can check if it meets (12). If it
does, the given power is optimal; or lower a step and check it again.

Next, we solve this minimization problem (P1) with Lagrangian techniques.
Firstly, by introducing nonnegative dual variables λ = [λ1, λ2, ..., λN ] and μ =
[μ1, μ2, ..., μN ], the Lagrange function is given by

L (p,λ,μ) = −
∑

n

f0 (pn) +
∑

n

λn (pn − pmax)

+
∑

n

μn

(∑N

m=1,m �=n
pmgm,n − Imax

)

. (14)
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The dual function is defined as an unconstrained minimization of the
Lagrangian function:

g (λ,μ) = inf
p

L (p,λ,μ) . (15)

We consider the problem in (15) for obtaining g (λ, μ) with a given set of λ and
μ. From (14), we have

∂L (p,λ,μ)
∂pn

=
gn,nσ2

0
(∑N

m=1,m �=n pngn,m + σ2
0

)2 + λn + μn

∑N

m=1,m �=n
gm,n. (16)

Because the dual function is always convex, a gradient-type search is guaran-
teed to converge to the global optimum. Problem P1 is solved via the following
first-order algorithm that utilizes the gradient of L (p,λ,μ) to simultaneously
update the dual variables with constant Δ [11],

pk+1
n =

[

pk
n − Δ

(
∂L (p,λ,μ)

∂pn

)]

P

(17)

λk+1
n = λk

n + Δ (pn − pmax) (18)

μk+1
n = μk

n + Δ

(∑N

m=1,m �=n
pmgm,n − Imax

)

, (19)

where k is the iteration number and Δ is the iteration step and [x]y is the
projection of x onto the set y. According to [11], the above gradient update can
be guaranteed to converge to the optimal dual variables as long as the sequence
of scalar step Δ is chosen appropriately. Finally, the entire steps to solve the
optimization problem is displayed in Algorithm1, where Step 1 to 6 solve P1
and Step 8 to 11 check (12). The computational complexity of the algorithm
is counted as follows. Solving (17) requires solving n equations by complexity
O(N). (17), (18) and (19) need to update 3n times at the same time with k
iterations. Thus the complexity of the solution is measured by O(3KN).

4 Simulation Results and Analysis

In Table 1, we list the key system parameters which are used in the simula-
tions. The presented results are acquired via 1000 independent tests. In order to
evaluate the performance of our proposed method, an optimal power allocation
method oriented to SINR in [14] is introduced as a benchmark scheme.

Figure 1 depicts the sum throughput of different methods as a function of
the density of SCs. The first observation from Fig. 1 is that the traditional
SINR-oriented power control incurs a performance loss compared to the proposed
SLNR-oriented power control with channel uncertainty. This phenomenon can
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Algorithm 1. The power control algorithm with channel uncertainty
1: Initialization: Set the parameters k = 0, p(0) = {p0

n},Δ > 0, ε, γ, δ.
2: for k = 1, 2, ... do

3: for each user, calculate p∗
n =
[
pk

n − Δ
(

∂L(p,λ,μ)
∂pn

)]
P
.

4: Update λk+1
n and μk+1

n according to (18), (19).
5: Update pk+1

n = p∗
n.

6: end for Until
∣∣pk+1 − pk

∣∣ ≤ δ.
7: If P (p) ≤ ε, end; or, step into 8.
8: for m = 1, 2, ..., M do
9: Set p(k) = p∗(t).

10: p(m+1) = p(m) − γ.
11: end for Until P (p) ≤ ε.

Table 1. System parameters used in simulations.

Parameter Value Comments

σ2
0 −100 dBm Noise power

pmax 20 dBm The maximum power of the SC

Imax, I
p
max −120 dBm The interference threshold value of SC, PU

Δ 0.15 The iteration step

γ 0.02 The power step

δ 10−4 The accuracy of power

ε 0.1 The threshold value of the outage probability

be attributed to the fact that not only does SLNR promote SCs benefit, but also
can suppress the interference on others. In this way, the performance is greatly
improved. Furthermore, we can also observe that both curves have a tendency to
decline when the number of SCs becomes large, which is due to the fact that as
the density increases, the mutual interference among SCs may result in several
SCs out of work, considering the constraint C2 in the optimization.

Figure 2 discloses the sum throughput versus the SC’s interference threshold
level Imax as a function of the transmission power limit, where the number of
SCs is invariable. From the figure, the sum throughput has a uptrend with the
increase in transmission power. Taking Imax = 10−10 as an example, it can be
observed that more robust performance can be approached as the transmission
power increases. Nevertheless, two conditions, the interference between SCs and
the power increasing, have bind effects mutually. So the sum throughput will
reach saturation state when the power increases to a certain extent. The phe-
nomenon can be seen more noticeably when Imax = 10−12 and Imax = 10−13.
Furthermore, the power increasing would be greatly limited if the interference
threshold is too small such as Imax = 10−15, and thus the sum throughput is
almost invariable.
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Figure 3 shows the average time elapsed as a function of SC’s power limit.
The commonly-used barrier method in the literature and the adopted first-order
lagrangian method are compared. From the analysis results given in Sect. 3, we
know that the adopted first-order lagrangian method has a linear complexity of
O(3KN). Addition to this, the results in Fig. 3 show that the time cost of our
method is not only the lower one, but also it varies trivially as the SC’s power
limit increases.

5 Conclusion

In this paper, we have proposed a SLNR-oriented power control method to pro-
mote the throughput capacity of the system. Meanwhile, the interference is mit-
igated between massive SCs with channel uncertainty. Gaussian approximation
based on the Lyapunov ’s central limit theorem has been used to offer a conserva-
tive surrogate. Moreover, we have developed an effective power control algorithm
based on first-order Lagrangian where the dual variables are updated simultane-
ously and the solution is amenable. Simulation results have validated the effec-
tiveness of our proposed algorithm. As one future work, a subject of extension
to more general channel models including correlation or feedback delay will be
investigated.
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