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Abstract. The rapid development of wireless communication brings us con-
venience as well as scarcity of radio spectrum resources. Hence, scientists
proposed cognitive radio technology to solve this problem. Spectrum sensing is
a pivotal technology protecting primary users from interference of secondary
users in cognitive radio, and can be achieved by different algorithms which will
result in different performances. In this paper an original cooperative broadband
spectrum sensing algorithm based on undersampling is proposed to reduce the
hardware overhead as well as satisfying the requirement of system performance.
The proposed cooperative spectrum sensing algorithm will use undersampling
technology in the secondary user in order to save costs and reduce hardware
overhead. On this premise, in the process of information transmission, the
algorithm have adopted a method which is similar to VOFDM for signal
transmission in the channel between secondary users and fusion center, so that
the system can overcome the intersymbol interference caused by broadband
signal and rebuild the state of primary users in the fusion center. The simulation
results shows that the performance of proposed algorithm is similar to the
traditional single-node spectrum sensing algorithm and “or” decision algorithm,
however, worse than “and” decision algorithm. The performance loss is
acceptable considering its effect of reducing hardware overhead.
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1 Introduction

With the development of wireless communication, wireless communication network
becomes an indispensable part in our society, followed by the popularity of wire-
less access equipment and the increase of wireless service and applications. It is
merited that such a development is limited by the lack of wireless spectrum resources.

Recent years a wireless communication technology named cognitive radio is pro-
posed by Dr. Joseph Mitola to solve the problem mentioned above. Cognitive radio can
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continuously detects the channels, makes a decision of PU’s existence, and finally
access the idle spectrum opportunistically by using Radio Knowledge Representation
Language (RKRL) [1]. In this paper the spectrum sensing part will be researched.

The current spectrum sensing technology is a PU detection technology in receivers,
thus according to the number of receivers, it can be divided into single-point spectrum
sensing and cooperative spectrum sensing. The computer complexity of single-point
spectrum sensing is low, thus it can be easily realized. However, for its limited sensing
data, the accuracy of single-point spectrum sensing is worse than that of cooperative
spectrum sensing. For these reasons, single-point spectrum sensing is gradually
replaced by cooperative spectrum sensing [2, 3].

In real applications, the centralized sensing model (see Fig. 1) is the most common
of cooperative spectrum sensing models [4–7]. The network of centralized sensing
model consists of many SUs and a fusion center (FC), which can gather SUs’ sensing
data, make a comprehensive decision and broadcast such spectrum decision to all SUs.
Centralized sensing model has high real-time performance, although it requires a
powerful computation ability.

The current spectrum sensing technology is continuing to mature with the devel-
oping requirement of hardware, especially the growing high frequency at which SUs
sample the target signal. To reduce the cost of receivers, a cooperative spectrum
sensing algorithm based on undersampling is proposed in this paper. As the
name implies, an undersampling strategy is used in SUs’ receivers, on that premise, a
technology similar to vector orthogonal frequency division multiplexing (VOFDM) is
applied in fusion stage to restore the primeval signals.

The main contributions of this paper are as followings:

(1) The SUs of the proposed algorithm adopt an undersampling strategy to obtain the
sensing data. The time of all the SUs must be synchronized so that the symbols of
each time slot can be obtained by a SU.

(2) VOFDM is used in data fusion stage of the proposed algorithm to reduce
the transmit distortion of broadband signals.

Fig. 1. Centralized sensing model
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2 Cooperative Spectrum Sensing

2.1 Cooperative Spectrum Sensing Process

Cooperative spectrum sensing is coordinated by cognitive radio base station (CRBS),
and it is assumed that all the SUs involved in cooperative sensing have the same
spectrum state so that the decision made by FC is suitable for all these SUs. In real
applications, however, the SUs are too decentralized to regard as sharing the same state,
thus a clustering cognitive radio network is proposed (see Fig. 2), where the SUs is
divided into many clusters according to geographic condition, distance and other
factors and each cluster has a cluster head (CH) to control the sensing process. The SUs
within a cluster can be consider sharing the same spectrum state, which can not only
solve the problem that the spectrum decision of the FC is not consistent with the
practical spectrum state of the SUs, but also reduce the energy consumption of
multi-hop sensing information transmission to FC.

After observing the target channel in a sensing period, SUs within a cluster will
transmit the sensing information to CH. CH will make a locally spectrum decision
about current channel state using data fusion algorithm, and broadcast the spectrum
decision to SUs within the cluster through control channel. The data fusion algorithms
will be discussed next.

2.2 Data Fusion Algorithms

It is mentioned above that the centralized sensing model is the most common of
cooperative spectrum sensing models, and in centralized sensing model the FC would
make the spectrum decision of PU’s state based on SUs’ sensing data. Such a decision
must be made by using data fusion algorithms. Data fusion algorithms can be divided

Fig. 2. The clustering cognitive radio network
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into three types according to the size of SUs’ sensing data and the requirement of
control channel bandwidth [8], which are as follows.

Soft combining. If the control channel bandwidth is wide, SUs will send the sensing
data completely to FC, such a process is called as soft combining. Equal gain com-
bining, Maximum likelihood ratio combining and selection combining are all belong to
soft combining.
Hard combining. Hard combining is a multiple-step decision under a narrow control
channel bandwidth, where SUs will make a decision of sensing data respectively and
send the 1bit decision results to FC to reduce the channel overhead. The commonly
used algorithms, ‘and’ decision, ‘or’ decision and ‘majority’ decision, are all hard
combining algorithm. In ‘or’ decision, the FU will consider PU existing as long as there
is one SU decision that the channel is occupied by PU. In ‘and’ decision, the FU will
consider PU existing only if all the SUs decide that the channel is occupied by PU. The
‘majority’ decision is a compromise of the above two algorithm that the FU will
consider PU existing when more than half of the SUs decide that the channel is
occupied by PU. All in all, those algorithm can be reduced to ‘k out of N’ algorithm,
where the FU will consider PU existing when more than k SUs of the all N SUs decide
that the channel is occupied by PU [9]. The false alarm probability Qf and the detection
probability Qd of ‘k out of N’ algorithm can be represented as:

Qf ¼ PfH0jH1g ¼
Xn
l¼k

n
l

� �
Pl
f 1� Pf
� �n�l ð1Þ

Qd ¼ PfH1jH1g ¼
Xn
l¼k

n
l

� �
Pl
d 1� Pdð Þn�l ð2Þ

where H0 stands for the circumstance that PU is turned of and H1 stand for the
circumstance of the target channel is occupied by PU. Pf and Pd are the false alarm
probability and the detection probability of a SU. Obviously, when k separately equals
to 1, n and n/2, ‘k out of N’ algorithm would become ‘and’ decision, ‘or’ decision and
‘majority’ decision algorithm.

Softened hard combining. In the practical application of cooperative spectrum
sensing network, the reliability of different SUs may be different under the effects of
complex conditions. Thus the softened hard combining is proposed, where the SUs
send a reliability parameter a (i.e., the weight of each decision result) as well as the 1bit
decision results to FC to improve the performance of spectrum sensing decision.

3 Cooperative Spectrum Sensing Algorithm Based
on Under-Sampling

According to the Nyquist Sampling Theorem, the sampling frequency of receivers must
be greater than or equal to twice of the maximum signal frequency (i.e., fs � 2fH),
otherwise, the spectrum aliasing will occur and the original signal will be unable to
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restore completely. In practical applications, the sampling frequency of receivers may
be set as 4 to 10 times of the maximum signal frequency.

However, the higher the sampling frequency is, the more expensive the receivers
are. Thus high sampling frequency brings us accuracy as well as huge cost. On the one
hand, the low frequency samplers can be used to percept the high frequency signal in
spectrum sensing system under the condition of undemanding accuracy requirement,
the price of which is just lossy restore. On the other hand, the sample frequency of SUs
may be limited by hardware devices. The spectrum aliasing will happen while the
target channel bandwidth is wide. Thus the original signal has to be restored under a
low sample frequency, which is called undersampling. In this section, a cooperative
broadband spectrum sensing algorithm based on undersampling is proposed, and the
algorithm is divided into two stages: SUs undersampling and sensing data fusion. The
details will be discussed below.

3.1 SUs Undersampling

The first stage of cooperative broadband spectrum sensing algorithm based on
undersampling is SUs undersampling. In traditional cognitive radio network, the high
frequency sampling is adopted in SUs receivers. Moreover, all the SUs receivers adopt
uniform and periodic sampling, i.e., the entire channel signal is gathered in each SU. It
is assumed that each SU needs to gather M data in unit time to meet the requirement of
perception precision, those data can be represented as:

Yn ¼ ðyn;0; yn;1; . . .; yn;M�1Þ; n ¼ 0; 1; . . .;N � 1 ð3Þ

where Yn is the sensing data of the nth SU, and N is the number of SUs in a cluster. The
initial state of the M data can be represented as,

X ¼ ðx0; x1; . . .; xM�1Þ ð4Þ

As shown in Eqs. (3) and (4), xk is the PU state and yn;k is the PU decision state
decided by the nth SU. Both of xk and yn;k can be represented by {0,1}, “0” represents
that the channel is idle and “1” represents that the channel is occupied by PU. The final
PU decision state yk will be made by FC according to data fusion algorithm and yn;k.

However, in the proposed algorithm, it is assumed that there are N SUs and each of
them needs to gather K data in unit time (i.e.,M ¼ NK) and the Eq. (4) can be rewritten
as X ¼ ðx0; x1; . . .; xNK�1Þ. The sensing data of each SU can be represented as:

Yn ¼ ðyn; yNþ n; y2Nþ n. . .; yðK�1ÞNþ nÞ; n ¼ 0; 1; . . .;N � 1 ð5Þ

As shown in Eq. (5), the SUs are sampling the target channel alternately (see
Fig. 3), and obviously the time synchronism of SUs must be accurate.

From Fig. 3, we can conclude that in the proposed cooperative spectrum sensing
algorithm each time slot has only one sensing data instead of N sensing data in
traditional cooperative spectrum sensing algorithm. Moreover, the SUs will gather all
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the K data, modulate these data, and finally send all the decision results simultaneously
to the FC. Such a process will be shown in the next subsection.

3.2 Sensing Data Fusion

In the proposed algorithm, the steps of data fusion stage are similar to the
multiple-input multiple-output vector orthogonal frequency division multiplexing
(MIMO-VOFDM) technology [10], which is shown in Fig. 4.

In VOFDM, the modulation system of transmitter is inverse fast Fourier transform
(IFFT) and the demodulation system of receiver is fast Fourier transform (FFT), such
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Fig. 3. Sampling process of the proposed algorithm
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Fig. 4. The data fusion process of the proposed algorithm
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modulate and demodulate way can be used in the proposed algorithm. The transition
symbols can be represented as,

y0 yN � � � yðK�1ÞN
y1 yNþ 1 � � � yðK�1ÞN þ 1

..

. ..
. . .

. ..
.

yN�1 y2N�1 � � � yKN�1

0
BBB@

1
CCCA ð6Þ

The K elements of the nth line in Eq. (6) is the received symbols of the nth SU, and
in the transmitter of each SU, those K symbols are transformed into K new symbols by
IFFT. Then the K new symbols will be transmitted in K different subchannels
respectively (each subchannel has N symbols in it), just as VOFDM does. The K new
symbols ZðnÞ can be represented as:

ZkðnÞ ¼ 1ffiffiffiffi
K

p
XK�1

k¼0

YnðkÞ expðj2pnkK
Þ k ¼ 1; 2; . . .;K � 1 ð7Þ

Equation (7) is the formula of IFFT, where ZkðnÞ stands for the nth signal of the kth
subchannel.

Due to the ISI channel, cyclic prefix must be inserted before Zk, here we insert the
first ~C elements of Zk before Zk (or we can insert the last ~C elements of Zk before Zk).
The symbols after insertion Ẑk can be represented as:

Ẑk ¼ ðZkð0Þ; Zkð1Þ; . . .; Zkð~C� 1Þ; Zkð0Þ; Zkð1Þ; . . .; ZkðN � 1ÞÞ ð8Þ

where the length of cyclic prefix ~C� L=N½ � for the purpose of removing the ISI, and L

is the order of channel transfer function HðzÞ (HðzÞ ¼ PL
n¼0

hðnÞz�n).

For simplicity, the channel transfer function is assumed known. According to [10],
the transfer function HðzÞ can be rewritten as:

�HðzÞ ¼

h0ðzÞ z�1hK�1ðzÞ � � � z�1h1ðzÞ
h1ðzÞ h0ðzÞ � � � z�1h2ðzÞ
..
. ..

. ..
. ..

.

hK�2ðzÞ
hK�1ðzÞ

hK�3ðzÞ
hK�2ðzÞ

� � �
� � �

z�1hK�1ðzÞ
h0ðzÞ

2
66664

3
77775

ð9Þ

where hkðzÞ is the kth polynomial of HðzÞ, which can be represented as:

hkðzÞ ¼
X
l

hðKlþ kÞz�l; k ¼ 0; 1; . . .;K � 1 ð10Þ

And the relationship between the transfer information symbol of the kth subchannel
Ẑk and the received signal of the kth subchannel Rk can be formulated as:
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Rk ¼ �HkẐk þ ~nk; k ¼ 0; 1; . . .;K � 1 ð11Þ

where �Hk ¼ �HðzÞjz¼expðj2pk=NÞ; k ¼ 0; 1; . . .;K � 1, and ~nk is the FFT of the additive
noise nðnÞ and therefore has the same statistics as nðnÞ.

After passing through the ISI channel, the received signal needs to remove the
cyclic prefix. The signal after removing cyclic prefix can be represented as:

R̂k ¼ ðRkð0Þ;Rkð1Þ; . . .;RkðN � 1ÞÞ k ¼ 0; 1; . . .;N � 1 ð12Þ

And finally all of the R̂k need to be demodulated at the receiver by K point FFT,
which can be represented as:

GnðkÞ ¼ 1ffiffiffiffi
K

p
XK�1

l¼0

R̂lðkÞ expð�j2pnl
K

Þ; n ¼ 0; 1; . . .;K � 1 ð13Þ

where Gn is the reduced signal of Yn, and after a parallel-to-serial transform process, we
can get the spectrum decision of PU.

4 Simulation

In this section the feasibility and performance of proposed algorithm will be evaluated
through comparing with “and” decision algorithm, “or” decision algorithm and
single-point sensing algorithm. Please note that the noise power is assumed 10 mW and
the SU number is assumed 5. The sensing data are observed in the durations of sensing
period.

The performance of spectrum sensing algorithm can be measured by detection
probability and false alarm probability. Three different spectrum sensing cases are
considered, and the simulation results are plotted in Figs. 5, 6 and 7. In Fig. 5, the
number of SUs is set to 5 and the SNR of received signals are set to 5 dB. In Fig. 6, the
number of SUs is set to 5 and the SNR of received signals are set to 0 dB. In Fig. 7, the
number of SUs is set to 5 and the SNR of received signals are set to -5 dB. We can
draw a conclusion from Figs. 5, 6 and 7 that the performance of the proposed algorithm
is almost the same as that of “or” decision algorithm and single-point sensing algo-
rithm, and a little poorer that the performance of “and” decision algorithm. Considering
its effect of reducing hardware overhead, such a performance loss is acceptable.

In Fig. 8, the SNR-BER performance curve of the proposed algorithm is plotted. It
is shown that the BER is reducing with the increasing of SNR, and when SNR is 5 dB,
the BER is 10�0:6(0.25), which means the proposed algorithm had better be used in
high SNR cases.
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5 Conclusion

In this paper, a cooperative spectrum sensing algorithm based on undersampling has
been proposed. In the proposed cooperative spectrum sensing network, the under-
sampling technology is used in SUs to save costs and reduce hardware overhead. Then,
the algorithm have adopted a method which is similar to VOFDM for signal trans-
mission in the channel between secondary users and fusion center, so that the system
can overcome the intersymbol interference caused by broadband signal and rebuild the
state of primary users in the fusion center. Under three different channel SNR cases, the
simulation results show that the performance of proposed algorithm is similar to the
traditional single-node spectrum sensing and the “or” decision algorithm, however,
worse than “and” decision algorithm. The performance loss is acceptable considering
its effect of reducing hardware overhead.
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Fig. 5. Spectrum sensing performance
comparisons under channel SNRs = 5 dB.
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Fig. 6. Spectrum sensing performance com-
parisons under channel SNRs = 0 dB.
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