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Abstract. In this paper, we propose a novel indoor Wireless Local Area
Network (WLAN) deployment optimization approach based on the error
bounds of Neighbor Matching Algorithms (NMAs). We derive out the
closed-form solution to the localization errors of NMAs with respect to the
environmental size, interval of Reference Points (RPs), number of neigh-
bors, and locations of Access Points (APs). Based on the requirement of
localization precision, as well as networking overhead, we optimize the
networking parameters, like the interval of RPs, number of neighbors,
and locations of APs. Finally, the extensive experiments are conducted
to demonstrate that the proposed approach can effectively improve the
localization precision of NMAs in indoor WLAN environment.
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1 Introduction

As the demand for the real-time location information increases remarkably, the
Location-based Services (LBSs) have attracted significant attention in recent
decade. The accurate localization in outdoor environment can be realized by
using the well-known Global Positioning System (GPS), whereas the localiza-
tion accuracy decreases seriously in indoor environment since the signal from
the satellites is blocked by the buildings [1]. At the same time, there is grow-
ing interest in the indoor localization techniques which are based on the existed
indoor high-speed wireless access networks, like the Wireless Local Area Net-
work (WLAN) [2], Zigbee, and Radio Frequency Identification (RFID). Due to
the consideration of the cost overhead and localization accuracy, the WLAN
technique is more favored by the current indoor localization systems.

Compared to the conventional trilateration based localization approach, the
location fingerprint based localization approach is preferred in WLAN localiza-
tion. In the typical location fingerprint based localization system [3,4], the grids
of Reference Points (RPs) are first required to be calibrated. Second, the location
fingerprints which are typically the vectors of Received Signal Strength (RSS)
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mean from each hearable Access Point (AP) is collected at every RP. The set
of location fingerprints is recognized as the radio map. Finally, when a location
query occurs, the estimated location can be reported by matching the newly
collected RSSs against the radio map.

Up to now, there is a batch of studies focusing on the design of localiza-
tion algorithms, like the Nearest Neighbor (NN), K-nearest Neighbor (KNN)
[5], weighted KNN (WKNN) [6], which are also known as the Neighbor Match-
ing Algorithms (NMAs). NMAs are easily applied and featured with low com-
putation overhead, practicability, and high-precision [7]. The KNN returns the
location estimate as the average of the coordinates of the K neighbors corre-
sponding to the smallest RSS distances to the newly collected RSSs. The NN
is a special case of KNN as the number of neighbors equals to 1. The differ-
ence between the KNN and WKNN is that the latter one returns the location
estimate as the weighted coordinates of the K neighbors, while the weights of
neighbors are determined by the distances between the location fingerprints and
newly collected RSSs. Since the NMAs are easily applied and featured with low
computation overhead, practicability, and high-precision, we focus on deriving
the error bounds of NMAs to investigate the theoretical relation between the
localization error and networking parameters.

The remainder of the paper is organized as follows. The theoretical analysis
for the error bound of NMAs is presented in Sect. 2. The analytical results are
provided in Sect. 3. Finally, Sect. 4 concludes the paper.

2 Error Bound

In this paper, we focus on the analysis towards the theoretical relation between
the localization errors of NMAs and networking parameters, and meanwhile
derive out the closed-form solutions to the error bounds.

2.1 AP Located on the Boundary

Figure 1 shows a straight corridor with the Line-of-sight (LOS) from the AP.
The N RPs (with •’s) are uniformly calibrated with the same interval, R, in this
environment (with the length of N × R). The user location is described as

x = ri + σ, 0 ≤ σ ≤ R and 0 < i < N (1)

We rely on the logarithmic loss model [8] to characterize the signal propaga-
tion property, as shown in (6).

P = P (d0) − 10βlog10(d/d0) (2)

where P and P (d0) are the RSSs collected at the locations with d and d0 meters
from the AP respectively; and β is the path loss exponent. On this basis, the
distance of the RSSs collected by the user and at the n-th RP is calculated by

ΔPn = |Sn − Su| ==

{
10β log (n/(i + σ/R)), n ≥ i + 1
10β log ((i + σ/R)/n), n ≤ i

(3)
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Fig. 1. AP located on the boundary.

KNN. When K = 1, only the i-th or (i + 1)-th RP can be selected as the
estimated location since the location fingerprints at other RPs are farther away
from the RSS collected by the user. Based on this, we derive out the results in
Table 1.

Table 1. Results under K = 1 in KNN

Value of σ 0 ≤ σ ≤ (−i +
√

i2 + i)R (−i +
√

i2 + i)R < σ ≤ R
Relations of ΔPn ΔPi ≤ ΔPi+1 ΔPi+1 < ΔPi

Neighbors The i-th RP The (i+1)-th RP
Localization error er1 = |ri − x| = σ er2 = |ri+1 − x| = R − σ

Error bound ER1 =
N∑

i=1

∫ (−i+
√

i2+i)R
0 σdσ +

∫ R

(−i+
√

i2+i)R
(R − σ) dσ

When K = 2, based on (3), we can easily obtain that the location fingerprints
at the (i−1)-th, i-th, (i+1)-th, and (i+2)-th RPs are with the smallest distances
from the RSS collected by the user. Thus, we derive out the results in Table 2.

Table 2. Results under K = 2 in KNN

Value of σ 0 ≤ σ ≤ (−i +
√

i2 + 2i)R (−i +
√

i2 + 2i)R < σ ≤ R
Relations of ΔPn ΔPi ≤ ΔPi+1 < ΔPi−1 < ΔPi+2 ΔPi+1 ≤ ΔPi+2 < ΔPi < ΔPi−1

Neighbors The i-th, (i+1)-th RPs The (i+1)-th, (i+2)-th RPs
Localization error er1=R/2 er2 = (3R − σ)/2

Error bound ER2 =
N∑

i=1

∫ (−i+
√

i2+2i)R
0

R
2 dσ +

∫ R

(−i+
√

i2+2i)R

3R−σ
2 dσ

When K = k (k is odd), by using the mathematical induction, we can
derive out the error bound in (4). Table 3 illustrates the neighbors and the cor-
responding localization errors under different values of σ. In Table 3, we set
k1 = (k − 1)/2 and k2 = (k + 1)/2 respectively.

ERodd (1,N) =
N∑
i=1

∫
er1dσ+ · · · +

∫
erm+1dσ · · · +

∫
er(k+3)/2dσ (4)

where erm+1 = 1/k(1 − 2m)σ + kmR + (k2 − m)(k1 − m)R, m ∈ {0, · · · , k2}.
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Table 3. Results under K = k (K is odd) in KNN

Value of σ Neighbors errors

0 ≤ σ < (−i +
√

(i − k1)(i + k2))R The (i-k1)-th, · · · , (i+k2 − 1)-th RPs er1
· · · · · · · · ·

(−i +
√

i(i + k))R ≤ σ ≤ R The (i + 1)-th,· · · , (i + k)-th RPs erk2+1

Similarly, when K = k (k is even), we derive out the error bound in (9)
based on the result of errors corresponding to different values of σ in Table 4. In
Table 4, we set k3 = k/2 − 1 and k4 = k/2 + 1 respectively.

Table 4. Results under K = k (K is even) in KNN

Value of σ Neighbors errors

0 ≤ σ < (−i +
√

(i − k3)(i + k4))R The (i-k3)-th,· · · ,
(i+k4 − 1)-th RPs er1

· · · · · · · · ·
(−i +

√
(i − (k3 + 1 − n))(i + (k4 − 1 + n))R

≤ σ < (−i +
√

(i − (k3 − n))(i + (k4 + n))R
The (i-k3 + n)-th,· · · ,
(i+k4 + n − 1)-th RPs ern+1

· · · · · · · · ·
(−i +

√
i(i + k))R ≤ σ ≤ R The i + 1-th,· · · ,

(i + k)-th RPs erk4

EReven (1,N) =
N∑
i=1

∫
er1dσ+ · · · +

∫
ern+1dσ · · · +

∫
er(k+2)/2dσ (5)

where ern+1 = 1/k(−2nσ + n2 + n + k2
/
4), n ∈ {0, · · · , k4}.

2.2 WKNN

When K = 1, the WKNN becomes the KNN. When K = 2, based on the results
in Table 2, we can easily derive out the error bound in Table 5.

Table 5. Results under K = 2 in WKNN

Value of σ 0 ≤ σ ≤ (−i +
√

i2 + 2i)R (−i +
√

i2 + 2i)R < σ ≤ R
Relations of

ΔPn
ΔPi ≤ ΔPi+1 <
ΔPi−1 < ΔPi+2

ΔPi+1 ≤ ΔPi+2
< ΔPi < ΔPi−1

Neighbors The i-th, (i+1)-th RPs The (i+1)-th, (i+2)-th RPs
Localization

error er1 = w1ri + w2ri+1 − x er2 = w1ri+1 + w2ri+2 − x

where w1 =
1/(R−σ)

1/(R−σ)+1/(2R−σ) and w2 =
1/(2R−σ)

1/(R−σ)+1/(2R−σ)

Error boundER2 =
N∑

i=1
(
∫ (−i+

√
i2+2i)R

0 er1dσ +
∫ R

(−i+
√

i2+2i)R
er2dσ)

Since the weight of each neighbor in WKNN cannot be formulated by a
general expression, there is no closed-form solution to the error bound of WKNN.
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However, the weights of neighbors can be easily calculated as the number of
neighbors and networking parameters are determined. Hence, we only focus on
the error bound of KNN in the results that follow.

2.3 AP Located at a Random Location

Figure 2 shows the layout of environment as the AP is located at a random
location. In this situation, the user location is described as

x = ri − mR + σ,m ≤ N/2 (6)

where mR is the distance between the AP and left boundary.
By assuming that the antenna of AP is omnidirectional, we assume that

the RPs with the same distance from the AP have the same probability to be
selected as the neighbors. On this basis, there are three cases to be discussed
respectively, i.e., 0 ≤ m < k1, k1 ≤ m < k, and m ≥ k. When K = k (k is odd),
we derive out the error bounds with respect to different cases in Table 6.

Thus, as the number of neighbors is odd, the error bound of WKNN is cal-
culated by

ERodd = Er1 + Er2 + Er3 (7)

Similarly, When K = k (k is even), we derive out the error bounds with
respect to different cases in Table 7.

Thus, as the number of neighbors is even, the error bound of WKNN is
calculated by

EReven = Er1 + Er2 + Er3 (8)

Therefore, by assuming that the user locations obey the uniform distribution
in the target environment, we can calculate the error bound in this situation as

ERave =
{

1
N ·R · ERodd K = 2r − 1 and r ∈ N+

1
N ·R · EReven K = 2r and r ∈ N+ (9)

X

N×R

r1 r2 r3 rNri ri+1

R user

x=ri-mR+mR

0

Fig. 2. AP located at a random location.
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Table 6. Results under K = K (K is odd) in WKNN

Case 1: 0 ≤ m < k1
if 0 ≤ i < k1 then Er1=ERodd (1,k1)+ERodd (1,m)

if k1 ≤ i < k1+m then Er2=ERodd (k2,k1+m)+
∑k1+m

k2
(k−m−2−2i)(m−i+1)R

2
if k1+m ≤ i then Er3=ERodd (k1+m,N−m)

Case 2: k1 ≤ m < k

if 0 ≤ i < k1 then Er1=
∑k1

i=1

[
(k2 − 1)

/
8 − i

]
R

if k1 ≤ i < m then
Er2=

∑m
k1

[
(k2 − 1)

/
8 − i + 1/2(m − k1 − 1)(m − k1)

]
R

− ∫
(m − k1)σdσ − ∫

(iR + σ)mdσ
if m ≤ i then Er3=ERodd (m,N−m)

Case 3: m ≥ k

if 0 ≤ i < k1 then Er1=
∑k

i=1

[
(k2 − 1)

/
8 − i

]
R

if k1 ≤ i < m then Er2=
∑k

i=1

∫
(iR + σ)dσ

if m ≤ i then Er3=ERodd (m,N−m)

Table 7. Results under K = K (K is even) in WKNN

Case 1: 0 ≤ m < k4
if 0 ≤ i < k4 then Er1=EReven (1,k4)+EReven (1,m)

if k4 ≤ i < k/2+m then Er2=EReven (k4,k3+m)+
∑k3+m

k4
(k−m−2−2i)(m−i+1)R

2
if k/2+m ≤ i then Er3=EReven (k3+m,N−m)

Case 2: k4 ≤ m < k

if 0 ≤ i < k4 then Er1=
∑k3

i=1

[
(k2 − 1)

/
8 − i

]
R

if k4 ≤ i < m then
Er2=

∑m
k4

[
(k2 − 1)

/
8 − i + 1/2(m − k4 − 1)(m − k4)

]
R

− ∫
(m − k4)σdσ − ∫

(iR + σ)mdσ
if m ≤ i then Er3=EReven (m,N−m)

Case 3: m ≥ k

if 0 ≤ i < k4 then Er1=
∑k

i=1

[
(k2 − 1)

/
8 − i

]
R

if k4 ≤ i < m then Er2=
∑k

i=1

∫
(iR + σ)dσ

if m ≤ i then Er3=EReven (m,N−m)

3 Experimental Results

3.1 Localization Errors

By setting R = 1 m and N = 60, Fig. 3 compares the error bounds and simulated
errors of the NMAs as the AP is located on the boundary (see Fig. 1). From
this figure, we observe that the simulated errors are much close to the error
bound. Furthermore, the WKNN generally exhibits higher localization accuracy
compared to the KNN as expected [9].

3.2 AP Locations

By setting R = 1 m and N = 60, Fig. 4 shows the variation of error bounds
with respect to the AP locations under different number of neighbors as the AP
is located at a random location (see Fig. 2). From Fig. 4, we can find that the
AP location has significant impact on the selection of the optimal number of
neighbors corresponding to the lowest error bound. Due to the symmetry of the
environment, the error bound reaches the maximum when the value m equals
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Fig. 3. Comparison of the error bounds and simulated errors.
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Fig. 4. Variation of error bounds under different values of m.

to 30. The sharp variation of error bounds around m = 7 m and 12 m is resulted
from the physical constraint of the environment.

4 Conclusion

In this paper, we proposed a novel indoor WLAN deployment optimization app-
roach based on the localization error bounds of NMAs. We present the prelim-
inary analysis on the closed-form solutions to the error bounds of NMAs in a
typical indoor environment. The purpose of this analysis is to design the effective
and efficient NMAs for the indoor WLAN localization. Furthermore, we discuss
the impact of networking parameters, like the environmental size, interval of
RPs, number of neighbors, and AP locations, on the error bounds of NMAs.
For the future work, how to optimize the WLAN deployment by using the error
bound criterion in multi-floor environment forms an interesting topic.
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