
An Redundant Networking Channel to Support
Reliable Communications in the Internet

of Things Applications

Michael Ortiz1, Yu Sun1(B), Gilbert S. Young1, and Qingquan Sun2

1 Computer Science Department, California State Polytechnic University, Pomona,
Pomona, USA

{mdortiz,yusun}@cpp.edu
2 School of Computer Science and Computer Engineering,

California State University, San Bernardino, USA
qsun@csusb.edu

Abstract. Within the context of the Internet-of-Things (IoT), the num-
ber of interconnected devices is increasing dramatically and allowing for
access to physical data that was previously unimaginable. Physical data
is rapidly changing which makes it important to keep networking connec-
tions active. Any drop in communication can lead to the loss of sensitive
data. A redundant network connection is an attempt to utilize common
networking solutions in order to decrease the likelihood of network down-
time. It does this by adding a new level of abstraction to networking,
allowing data to be sent over multiple networking solutions as if it were
a single network, as well as an intelligent decision engine to determine
the most optimized and reliable connection to use dynamically.

Keywords: IoT · Communication channel · Code generation

1 Introduction

The Internet-of-Things (IoT) is a rapidly growing area of technology that is
impacting aspects of everyday life in both the working and domestic sectors.
The basic idea of this concept is the pervasive presence around us of a variety of
things or objects – such as Radio-Frequency Identification (RFID) tags, sensors,
actuators, mobile phones, which through unique addressing schemes, are able
to interact with each other and cooperate with their neighbors to reach com-
mon goals [1]. IoT is gaining attention because of its flexibility and cost-effective
nature, allowing access to data that was previously unimaginable. From a statis-
tical standpoint, IoT devices have overtaken the human population by reaching
11 billion devices in 2011 and this number is expected to reach 24 billion devices
by 2020 [2].

IoT is powerful because of its flexibility and ability to connect to multi-
ple devices. With connections to different components, there comes the need
for secure and reliable communication channels. Digitization of physical objects
means that those objects must perform the same operations without any extra
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

X.-L. Huang (Ed.): MLICOM 2016, LNICST 183, pp. 283–292, 2017.

DOI: 10.1007/978-3-319-52730-7 29



284 M. Ortiz et al.

complexity. This must occur while also keeping data safe as it travels through
networks. Current communication systems such as Wi-Fi and Bluetooth have
had years of work put into them in order to allow secure transfer of data and is
active in numerous amounts of current mobile devices. Other communications
methods such as RFID are not as prevalent and would not be able to connect
to multiple devices.

Open Problem: Current networking solutions are not fit for the
demand of consistent data transmission from IoT devices as high-level
languages abstract I/O communications and expect network failures.
Networking applications today can function with an interrupted connection for
short periods of time to counter unreliable connections. However, if the IoT
applications are programmed in the same fashion, it will inevitably undermine
the full potential of IoT devices.

Interactions with the physical world are constant, thus, information can be
gained or lost with any disconnection. General purpose networking techniques,
such as TCP/IP, focus on reliably delivering packets rather than timing. More
specialized networking techniques must come into development to use in IoT
devices. Moreover, network time synchronization technology must be improved
considerably. Networks must offer the possibility of timing coherency across mul-
tiple, distributed computations. Networking innovations will dramatically change
the way distributed real-time software is designed.

Solution Approach ⇒ Model-based network management and the
abstraction of communication interfaces. To address these challenges, this
paper presents a network model that combines common communication proto-
cols together to provide reliable connections across multiple devices. A model-
based framework for communication between the IoT devices and the server. All
IoT systems follow the same concept of sending data from devices to a server
which processes the data and sends to other clients. Each device may differ
based on its functionality, but the nature of communication using the Internet
applies to all the IoT systems. The approach presented in this paper abstracts
the common elements and entities used in the implementation of communication
channels in order to both simplify communication to the necessary messages and
manage the network to reduce possible downtime.

The remainder of this paper is organized as follows. Section 2, we provide
a motivating example for this paper. We list down the challenges faced while
developing reliable communication system in Sect. 3 and present our solution to
address these challenges in Sect. 4. We analyze the related work in Sect. 5 and
conclude this paper as well as provide some insight on future work and scope of
this framework, in Sect. 6.

2 Motivating Example

IoT brings the possibility of new devices to consumers and health systems are
taking notice. Major academic research has gone into innovative solutions for



Redundant Networking 285

mobile healthcare delivery and sensors. In particular, major advances were intro-
duced in the mobile broadband and wireless internet m-health systems [4]. This
widespread and unprecedented evolution of m-health systems and services in
recent years has been reflected in a 2010 study by McKinsey estimated that
the opportunities in the global mobile healthcare market are worth between 50
billion and 60 billion [5]. As healthcare data becomes increasingly profitable, so
will the wireless technologies bundled with the devices. There will be multiple
reasons to address the communications streams for health devices:

1. The ability to relay information constantly. It is expected that mobile health-
care devices continue to monitor the user at all times. Devices such as the
Fitbit [6], Jawbone [7], Misfit [8], etc. need to monitor both active lifestyle
activity as well as sleeping patters. These are devices that will consist of as
little down time as possible.

2. Choosing the right mobile technology for price and communication. IoT
devices must stay on for long periods of time. Some might be connected
directly to an outlet, others will use batteries and some might even utilize
passive radio transmission (RFID). The goal for any of these devices is to
relay information to both the user and the management system for the data.

3. Dealing with communication failure. In the event that a device goes offline,
it is imperative that the device reconnect in the simplest way possible for the
user. Down time will reduce the usability of healthcare devices and can cause
profit loss for businesses.

4. Security of wireless technologies. A common problem for modern devices is
adapting to modern technologies while also keeping data safe. Sensitive health
data need to be kept secure wherever the user might go which means that
the mobile communication must be able to connect to all other IoT devices
securely.

5. Standardization to allow adaptable communication. A standard protocol for
sending and receiving health data will allow devices to adapt to the rapid
advancement of technology. If a new devices comes along with better or
changed hardware, standardizing the exchange of data will allow older devices
to keep in communication.

With advancements in these areas, mobile health will be able to create a more
focused effort at improving livelihood. By allowing devices constant information
to a user’s heartrate, food consumption, exercise routine, medical regiment, and
more, we will be able to decrease the duration of hospital stays along with
improve a doctor’s knowledge of his or her patients. This comes too with a need
to improve security. The amount of data that will be available needs to be kept
safe so users will not be used maliciously. Trust that mobile health devices keep
a user’s information private will be just as important as the direct service. Users
will feel more comfortable using communication devices that they are familiar
with such as Wi-Fi or Bluetooth or adapt to newer technologies like RFID as long
as they do not complicate the application. By keeping a developmental standard
in current and future healthcare devices, businesses will be able to gain quicker
market adaptation and access to other medical information.



286 M. Ortiz et al.

3 Challenges

Abstraction of any computer system is never without complication which goes
double for areas that require synchronization such as networks. Current IoT
connection problems are as follows:

1. The inconvenience of networking channel setup in IoT development. Research
development for IoT devices becomes a challenge as most devices do not
keep common developer interfaces while active. Communication settings such
as Wi-Fi and Bluetooth are hosted in locations that are not convenient to
edit initially (e.g., using the Raspberry Pi development board, you need to
connect to a monitor, use a keyboard and mouse to edit and control Bluetooth
devices).

2. The challenge of implementing the communication channel. For instance,
Bluetooth has the advantage of easy setup for clients, but programming Blue-
tooth is challenging, particularly for different types of devices and protocols.
Creating a client to find Bluetooth devices must be synchronous as to not
interrupt other device communications.

3. For mission critical IoT applications, there lacks a reliable communication
channel to ensure data integrity. Relying on a single communication chan-
nel and protocol is not reliable enough. Most communication systems are
expected to fail [8]. This means that allowing only one pathway for commu-
nication is yet truly reliable.

4. The lack of an intelligent decision engine on choosing the most optimized
communication channel. With multiple communication, understanding which
portal to send data through is imperative but IoT devices do not have decent
space for large scale, dynamic efficiency scaling.

For this project, the goal was to help pave the way to reduce some of these
challenges as well as demonstrate the areas that still need work.

4 Solution

To reduce the challenge of network connectivity and problems with multiple
connections on a single device, a generic framework has been developed - Reli-
ableConnection, that allows multiple communication services to be unified to
perform a singular function. As previously mentioned, the program works by the
abstraction of network communication services, such as Bluetooth and Wi-Fi,
and then managed autonomously in order to decrease the chance of downtime
for multiple devices.

The two main components for the framework is the Network class and the
Protocol class. The Network consists of a linked list of Protocols and man-
ages which Protocol will send or receive data. The Protocol is an interface that
abstracts TCP/IP and Bluetooth to a simpler functionality. This allows the net-
work to observe the casted protocol rather than deal with specific complications
in the communication services. To allow these classes to work with minimal



Redundant Networking 287

Fig. 1. Overview of ReliableConnection framework

supervision, an Observer pattern is implemented to both classes. The Network
observes Protocols so that any changes to a Protocol will quickly notify the
Network (Figs. 1, 2, 3 and 4. Addressed below are some of the ways the Reli-
ableConnection framework addresses challenges mentioned in Sect. 3:

1. Simplify the networking channel setup in IoT development with the default
connection manager. The connection manager is a built-in component in
the development framework that handles the channel setup and initializa-
tion process. Allowing a framework to manage connection data will allow
developers more time to focus on the logic of their code rather than relia-
bility. Keeping a major factor in IoT development under stricter guidelines
reduces the learning curve and invites increased innovation.

2. Abstract the common communication channel implementations. By creating a
single interface for multiple communication channels, complexity of the com-
munication is reduced while the benefits can be manipulated. For communi-
cation such as Bluetooth and TCP/IP, IoT devices can now switch between
them without disruption. On the back-end, energy efficiency, distance from
other devices and more can be monitored to allow the best communication
possible for IoT devices.

3. Enhance the data integrity by applying an intelligent and redundant connec-
tion channel. Allowing ReliableConnection to manage networking activity
provides standardization for network activity. By sending data over multiple
communication services, critical IoT applications can increase reliability and
chain devices with different hardware configurations.

4. Support a optimized communication channel by runtime checking and machine
learning techinques. ReliableConnection’s Network class provides developers
a way to weigh different communication services against each other. By giving



288 M. Ortiz et al.

such measurements, data can pass through the different services depending on
the developer’s needs without complex code. In addition, the framework has
a built-in verification engine to periodically check the performance using the
two different connections, which enables a dynamic decision on which type
of connection to use. We are also collecting the decision data, aligned with
feature factors such as time, location, protocol, and data type, so that we will
be able to apply machine learning to predict the best type of connection to
use based on the actual application scenario.

With this framework, new communication services can be quickly added to
the Network and contribute to the reliability without disrupting other Proto-
col behavior. A more descriptive discussion about the library follows.

4.1 Protocol

The Protocol class is a superclass that is modeled after the Observational design
pattern and adaptable for future additions. As an Observable class, it contains a
method to notify observers of any changes to the class, notifyObservers(). This
method will pass along a reference of the Protocol to an Observer, the Network
class.

The rest of the Protocol is defined in its interface implementation. The
interface methods will be status(), getOutputStream(), getInputStream(), con-
nect() and close(). The status() method is used to check if the Protocol is
actively connected to a network. getOutputStream() has a return object of

Fig. 2. UML diagram of the Protocol framework



Redundant Networking 289

java.io.OutputStream. for the communication standard contained in a Proto-
col object, Java’s Output stream is a general way to send bytes of information
across a network and will work with most networking devices. Similarly, get-
InputStream() is of java.io.InputStream. This allows the Protocol to have an
input and output interface for the Network object to manipulate. The connect()
method is used to implement any necessary function calls for connecting a net-
work device and returns type object. The return for connect() is expected to be
the stream for both getInputStream() and getOutputStream to utilize for that
Protocol. Finally, close() is a standard method for closing the stream within the
protocol for the Network or the user to utilize. The intention for the close()
method is so that the Network object can close or reconnect to a Protocol auto-
matically, for any debugging reasons.

4.2 Network

The Network is a class focused on the observation and management of Protocols
for the client device. The way the Network class discovers and retrieves an active
Protocol is through Java’s Observer design pattern. Java’s utility library has a
simple Observer interface with an update method. This method, update(), is
called when an Observable object’s notifyObservers method is activated. The
Observable method in this case is a Protocol. Once a Protocol is confirmed to
be active, it will notify the network through notifyObservers() that it is a viable
candidate for communication. The update method in Network then adds that
Protocol to a Linked List.

When a user would like to send or receive data to another client they
will go through the Network object. Network contains BufferedReader and
PrintWriter objects for sending and receiving data. Network only allows users
to use PrintWriter’s println() and BufferedReader’s readln() method. This
abstraction from a stream formatter allows for dynamic allocation of IO
streams. The Network class scans through Protocols and uses their IO streams

Fig. 3. UML diagram of the Network framework



290 M. Ortiz et al.

interchangeably within BufferedReader and PrintWriter. What the user will
see is Network.println(String msg) and Network.readln() functions. The Net-
work.println(String msg) function will send a string to all output streams avail-
able while the Network.readln() function will return a string from the best input
stream available.

5 ReliableConnection in Action

To demonstrate the functionality of this framework, a multi-client chat appli-
cation was created and hosted on Windows, Android and the Raspberry Pi
microprocessor board. The client is given both the IP address of a server as
well as discovers the Bluetooth hardware affiliated with the server. The Server
will then relay messages from one client to any other client connected with han-
dler threads. This application helps demonstrate how the ReliableConnection
framework will make data transfer simpler for IoT devices. Each chat client can
efficiently transfer data to a server using either TCP/IP or Bluetooth without
the developer having to directly send data over each protocol. The clients will
not have the challenge of complex networking design since the Network class
in ReliableConnection will manage it. At the same time, the connection relia-
bility for each client is increased since it can communicate over Bluetooth and
TCP/IP interchangeably. Now that the framework manages each protocol in one
area, information about each protocol can be compared to one another. With
this data, intelligent IoT design is realized, dynamic communication is now sim-
ple and efficient. A more in-depth look of the client and the server is provided
below.

Fig. 4. The chat application. Clients send and receive data while the Network handles
communication. The Chat client to the right will receive data through Bluetooth, since
it was deemed best to service the data that way.



Redundant Networking 291

5.1 Client

The ChatClient class is a chat GUI for observing and receiving messages from
other clients. On Windows, the chat client is a JFrame with a text field and a
message area. For the applications on Windows and Raspberry PI, Bluetooth is
done with the BlueCove Java library [9]. This gives a lightweight Java API for
working with Bluetooth stack calls. From BlueCove, the ChatClient can detect
available Bluetooth devices. Once all of the network information is added, the
ChatClient will finalize its connection to the server. If the connection is success-
ful, the server will request a name for the client. That name will be a unique
identifier for when other clients are added. As long as the name is unique, the
server will accept the information and allow a thread for communication. Now,
the Network handles both reading and printing information on the Protocols
available. The user now has both Wi-Fi and Bluetooth to send data over but will
not interface with the complex information associated with those communication
services. Instead, the user simply instantiates and provides connection informa-
tion to the classes BluetoothProtocol and WifiProtocol. Then, those objects add
the Network as an observer. The ChatClient’s network now observes behaviors
of the communication services without having the user worry about connectivity
issues. All that is passed to the network will be strings of information displayed
on the ChatClient’s message area.

5.2 Server

For the server side of this application, a ChatServer class was created to seam-
lessly broadcast client information on either Bluetooth or Wi-Fi. The server is
run only on Raspberry Pi or Windows as Android support was not necessary
to test the application. Once run, the ChatServer first opens up a dialog for
developers to choose what kind of connections should it accept. It can accept
Wi-Fi and Bluetooth at the same time or each one individually. Once a client
is accepted, a new thread will handle data sent to and from that client. Simply
put, the Handler thread is a stripped down chat client. The constructor will get
the socket information for the client and create a WifiProtocol and Bluetooth-
Protocol object to manage it. The Network then observes the Protocols to keep
them active, same as the ChatClient class. This makes the ChatServer simpler
to understand and modify, not having to worry about the network information.

6 Related Work

Communication is a layer that all devices have to deal with but now, more than
ever, the security of data from household devices and health systems makes it
increasingly important [10]. This communication layer is one that has to work
well with both the IoT cloud and the local embedded hardware systems. Cloud
services take the work out of storing and manipulating data leaving the Software
Developer to figure out how to both create IoT hardware and securely upload the



292 M. Ortiz et al.

data to the cloud. This framework, ReliableConnection, was created to bridge
the gap between the hardware and the cloud and help developers focus on the
logic of their system rather than the reliability of data flow. This frameworks
also allows for new applications to develop since data can be extracted in new
locations. If one protocol such as Wi-Fi is out of reach, possibly Bluetooth can
find local devices to hop over in a sort of P2P style system. This system provides
new possibilities as well as enhances IoT communication by offering a framework
to make IoT a better, more connected reality.

7 Conclusion and Future Work

The Network and Protocol framework allow IoT applications a standardized
way of sending data over a network, utilizing the advantages of multiple com-
munication methods. This helps create applications that have increased trust in
messages going through since a single Protocol failure will not halt communica-
tion.

For the future of this framework, more protocols such as RFID or IR could
be added to allow new communication features or triggers. The Network could
also be refined to monitor more details about each Protocol. Monitoring the
speed and efficiency of each Protocol could assist in delivering information while
reducing energy consumption and computational load.

References

1. Giusto, D., Lera, A., Morabito, G., Atzori, L. (eds.): The Internet of Things (2010)
2. Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of Things (IoT): a

vision, architectural elements, and future directions. Future Gener. Comput. Syst.
29(7), 1645–1660 (2013)

3. World Health Organization: mHealth: New Horizon for Health Through Mobile
Technologies (Global Observatory for e-health Services), vol. 3. WHO, Geneva
(2011)

4. Niyato, D., Hossain, E., Diamond, J.: IEEE 802.16/WiMAX-based broadband
wireless access and its application for telemedicine and e-health services. IEEE
Wirel. Commun. Mag. 14(1), 104–111 (2010)

5. Istepanaian, R.S., Zhang, Y.-T.: Guest editorial introduction to the special section:
4G health-the long-term evolution of m-health. IEEE Trans. Inf. Technol. Biomed.
16(1), 1–5 (2012)

6. “FitBit.” Fitbit Official Site for Activity Trackers & More. N.p., n.d. Web: 30 May
2016

7. “UP by Jawbone—Fitness Trackers for a Healthier You.” Jawbone. N.p., n.d. Web:
30 May 2016

8. “Misfit.” Misfit—Wearables, Activity Trackers, Fitness and Sleep Monitors. N.p.,
n.d. Web: 30 May 2016

9. Desmedt, Y.: Man-in-the-middle attack. In: Tilborg, H.C.A., Jajodia, S. (eds.)
Encyclopedia of Cryptography and Security, pp. 759–759. Springer, US (2011)

10. Wortmann, F., Flüchter, K.: Internet of things. Bus. Inf. Syst. Eng. 57(3), 221–224
(2015)


	An Redundant Networking Channel to Support Reliable Communications in the Internet of Things Applications
	1 Introduction
	2 Motivating Example
	3 Challenges
	4 Solution
	4.1 Protocol
	4.2 Network

	5 ReliableConnection in Action
	5.1 Client
	5.2 Server

	6 Related Work
	7 Conclusion and Future Work
	References


