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Abstract. In this paper, we rely on the neighborhood relations of the physically
adjacent Reference Points (RPs) to construct a physical neighborhood database
with the purpose of enhancing the accuracy of the Receive Signal Strength
(RSS) fingerprint based localization algorithms in Wireless Local Area Network
(WLAN) environment. First of all, based on the Most Adjacent Points (MAPs)
and their corresponding Physically Adjacent Points (PAPs), we construct the
Feature Groups (FGs), and then calculate the New Reference Point (NRP) with
respect to each FG. Second, the RSS at each NRP is estimated by using the least
square method based surface interpolation algorithm. Finally, we apply the K
Nearest Neighbor (KNN), Weighted KNN (WKNN), and Bayesian inference
algorithms to locate the target. The experimental results show that the proposed
integrated database construction helps a lot in improving the localization
accuracy of the widely-used KNN, WKNN, and Bayesian inference algorithms.
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1 Introduction

With the significant development of Wireless Local Area Network (WLAN) technique
and the wide deployment of WLAN Access Points (APs) in public environments, it is
particularly valuable and cost-efficient to rely on the WLAN infrastructures and the
off-the-shelf smartphones to conduct the people’s location tracking [1]. By employing
the WLAN Received Signal Strength (RSS), the WLAN fingerprint based localization
techniques have been carefully studied in recent decade due to the advantages of the
free ISM band and high enough accuracy performance [2–4]. And as far as we know,
most of the existing RSS fingerprint based localization techniques do not pay much
attention to the physical adjacency relations of Reference Points (RPs), while in fact,
these relations can help a lot in improving the localization accuracy [5, 6]. On this
basis, we construct an integrated physical neighborhood and location fingerprinting
database in off-line phase. Then, in on-line phase, we first select the k RPs with the
RSSs having the smallest distances from the newly recorded RSS by the target as the
k Most Adjacent Points (MAPs). Second, based on the physical neighborhood
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database, we search the n Physically Adjacent Points (PAPs) corresponding to the
k MAPs. Third, we use every c MAPs and PAPs (also named as Feature Points (FPs))
to construct a Feature Group (FG). Obviously, the number of FGs equals to Cc

kþ n.
Fourth, in each FG, we calculate a New Reference Point (NRP), as well as estimate the
RSS at the NRP by using the least square method based surface interpolation algorithm.
Finally, based on the Cc

kþ n NRPs, we apply the RSS fingerprint based localization
algorithm (e.g., K Nearest Neighbor (KNN), Weighted KNN (WKNN), and Bayesian
inference) to locate the target.

The rest of this paper is structrued as follows. In Sect. 2, we show the steps of the
integrated physical neighborhood and location fingerprinting database construction. In
Sect. 3, the performance of the integrated database for indoor WLAN localization is
examined. The experimental results with the WLAN RSSs recorded in an actual indoor
WLAN environment are provided in Sect. 4. Finally, Sect. 5 concludes the paper and
provides some future directions.

2 Integrated Database Construction

The physical neighborhood database is constructed based on the physical layout of the
target environment. In concrete terms, for the physical layout of an actual indoor
WLAN environment [9–17], we represent each office room or each segment of straight
corridors as a representative node. Every two adjacent representative nodes are con-
nected by an edge. Then we obtain a physical graph describing the physical layout of
the target environment. To construct the physical neighborhood database, we first label
each RP with a unique Reference Point Identifier (RPID). Second, based on the geo-
graphic relations of RPs described in physical graph, we construct a set of r adjacent
PAPs with respect to each RP. Finally, we construct the physical neighborhood
database consisting of the sets of PAPs for all the RPs. And the construction of location
fingerprinting database consists of two main steps as follow. First of all, we record a
sequence of RSS measurements at each RP, notated as {S1 = (rss11, rss12, …, rss1w),
S2 = (rss21, rss22, …, rss2w), …}, where w is the number of APs and rssij is the RSS
value from the j-th AP in Si. Second, we calculate the mean and standard deviation of
RSS at each RP to form a RSS fingerprint. Finally, the location fingerprinting database
is constructed to describe the relationship between the RSS fingerprints and the loca-
tions of RPs.

3 Accuracy Enhancement for Indoor WLAN Localization

To enhance the localization accuracy of the KNN, WKNN, and Bayesian inference
algorithms, we first select the k MAPs with respect to each newly recorded RSS.
Second, using the physical neighborhood database, we search the n PAPs corre-
sponding to the k MAPs, and then calculate the coordinates of the Cc

kþ n NRPs. Finally,
the localization algorithm (e.g., KNN, WKNN, and Bayesian inference) is applied to
estimate the locations of the target.
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In the results that follow, we mainly focus on the three typical combinational
localization algorithms: (i) KNN based WKNN (i.e., KNN is applied to calculate the
NRPs, and then WKNN is used to estimate the locates of the target), named as KbW;
(ii) WKNN based Bayesian inference (i.e., WKNN is applied to calculate the NRPs,
and then Bayesian inference is used to estimate the locates of the target), named as
WbB; and (iii) Bayesian inference based KNN (i.e., Bayesian inference is applied to
calculate the NRPs, and then KNN is used to estimate the locates of the target), named
as BbK.

3.1 Combinational Localization Algorithms

Steps of KbW. After the k MAPs are selected, we search the n PAPs corresponding to
the k MAPs by using the physical neighborhood database. After that, we construct Ck

c
+n

FGs, and the NRP in each FG, Pref, is calculated by

Pref ¼ 1
c

Xc

i¼1
ðxzi; yziÞ ð1Þ

where (xzi,yzi) is the 2-dimensional (2-D) coordinates of the i-th FP in the z-th FG. To
estimate the RSS at Pref, we assume that in each FG, the relationship between the
coordinates of FPs and their corresponding RSSs satisfies

szi�j¼axzi þ byzi þ dþ dzi ð2Þ

where szi−j is the RSS from the j-th AP at the i-th FP in the z-th FG. dzi is the RSS
distance between szi−j and the estimated RSS at the i-th FP. By using the least square
method based surface interpolation algorithm, the coefficients a, b, and d in (2) are
calculate by

a ¼ c syð Þc xyð Þ�c sxð Þd yð Þ
c xyð Þð Þ2�d xð Þd yð Þ ;

b ¼ c sxð Þc xyð Þ�c syð Þd xð Þ
c xyð Þð Þ2�d xð Þd yð Þ ;

d ¼ s� ax� by:

8
><
>:

ð3Þ

where

c syð Þ ¼ Pc
i¼1 szi�j � s

� �
yzi � yð Þ;

c xyð Þ ¼ Pc
i¼1 xzi � xð Þ yzi � yð Þ;

c sxð Þ ¼ Pc
i¼1 szi�j � s

� �
xzi � xð Þ;

d xð Þ ¼ Pc
i¼1 xzi � xð Þ2;

d yð Þ ¼ Pc
i¼1 yzi � yð Þ2;

s ¼ 1
c

Pc
i¼1 szi�j; x ¼ 1

c

Pc
i¼1 xzi; y ¼ 1

c

Pc
i¼1 yzi:

8
>>>>>>><
>>>>>>>:

ð4Þ
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After the coefficients in (2) are calculated, we estimate the RSS at Pref based on the
fitted surface function [8], z = ax + by + d. Finally, WKNN is applied to estimate the
locations of the target Puser, as described in (5).

Puser ¼
Pq

i¼1 1=dið Þ xi; yið ÞPq
i¼1 1=dið Þ ð5Þ

where di is the distance between the estimated RSS at the i-th selected NRP, (xi, yi), and
the newly recorded RSS. In KbW, the selected NRPs are the NRPs with the RSSs
having the smallest distances from the newly recorded RSS.

Steps of WbB. In WbB, we apply WKNN to calculate the NRP in each FG, as shown
in (6).

Pref ¼
Pc

i¼1 1=dzið Þ xzi; yzið ÞPc
i¼1 1=dzið Þ ð6Þ

where dzi is the distance between the estimated RSS at the i-th FP in the z-th FG,
(xzi, yzi), and the newly recorded RSS. The estimation of RSS at each NRP in WbB
follows the same steps involved in KbW. After that, we use Bayesian inference to
calculate the posterior probability of each NRP with respect to each newly recorded
RSSs. We take the NRP Lf as an example. By using the Bayesian inference, the
posterior probability of Lf with respect to s, P Lf js

� �
, is equivalent to the product of the

prior probabilities, as shown in (7).

P sjLf
� � ¼ P s1jLf

� �
P s2jLf
� �

. . .P swjLf
� � ð7Þ

where sj is the newly recorded RSS from the j-th AP. By assuming that the RSS
distribution at each NRP obeys a Gaussian distribution, we have

PðsjjLf Þ¼ 1ffiffiffiffiffiffi
2p

p
d
exp½�ðsj � lÞ2

2d2
� ð8Þ

where µ and d are the mean and standard deviation of the RSS distribution from the j-th
AP at Lf respectively. Then, we rely on the q selected NRPs with the largest posterior
probabilities with respect to the newly recorded RSS to estimate the locations of the
target, as shown in (9).

Puser ¼
Pq

i¼1 proi xi; yið ÞPq
i¼1 proi

ð9Þ

where proi and (xi, yi) are the posterior probability and the 2-D coordinates of the i-th
selected NRP respectively.
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Steps of BbK. In BbK, we calculate the NRP Pref in each FG by

Pref ¼
Pc

i¼1 prozi xzi; yzið ÞPc
i¼1 prozi

ð10Þ

where prozi and (xzi, yzi) are the posterior probability and the 2-D coordinates of the i-th
FP in the z-th FG. The steps of the estimation of RSS at each NRP in BbK are the same
to the ones in KbW and WbB. After the estimated RSS at each NRP is obtained, we can
estimate the locations of the target by

Puser ¼ 1
q

Xq

i¼1
ðxi; yiÞ ð11Þ

where the 2-D coordinates of the q selected NRPs are denoted as (xi, yi)(i = 1, , q). In
BbK, the selected NRPs are the NRPs with the RSSs having the smallest distances
from the newly recorded RSS.

3.2 Modified Bayesian Inference

In WbB, the RSS distribution at each location is assumed to obey a Gaussian distri-
bution, while in fact, the Gaussian distribution of RSS cannot always be approximately
obeyed especially in the Non-Line-of-Sight (NLOS) scenario. To solve this problem,
we use (12) to calculate the similarity between the RSS distributions at each RP and the
distributions of the newly recorded RSSs.

Si ¼ 1
Pw

j¼1 ð
PRSSupper

x¼RSSlower Pon�jðxÞln Pon�jðxÞ
QijðxÞ Þ

ð12Þ

where Qij(x) and Pon−j(x) are the RSS distribution from AP j at the i-th RP and the
distribution of the newly recorded RSSs from AP j respectively. The RSS value x is in
the range of [RSSlower, RSSupper].

4 Experimental Results

4.1 Accuracy Discussion

We conduct the experiments in an actual indoor WLAN environment with the
dimensions of 66 m � 22 m. The target environment is covered by 9 Cisco WRT54G
APs which are placed on the same floor in a building [7], as shown in Fig. 1. The 182
RPs are uniformly calibrated with the same interval of 1 m and the 81 test points
(TPs) are randomly selected in five straight corridors for the testing.

Figure 2 compare the Cumulative Distribution Functions (CDFs) of errors between
the proposed Combinational Localization Algorithms (i.e., KbW, WbB, and BbK) and
the conventional WKNN, Bayesian inference, and KNN, named as C-W, C-B, and C-K
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respectively. As can be seen from Fig. 2, the proposed algorithms generally perform
better than the conventional WKNN, Bayesian inference, and KNN in localization
accuracy. We take KbW as an example. By using KbW, the probabilities of errors
within 3 m and 2.5 m are about 10% and 5% more than the ones achieved by C-W
respectively.

4.2 Parameter Discussion

To examine the performance of the proposed integrated database construction for
indoor WLAN localization, we use the control variable approach to investigate the
relationship between the localization errors and the four parameters as follows:
(i) number of MAPs, k; (ii) number of the adjacent PAPs for each RP, r; (iii) number of
FPs in each FG, c; and (iv) number of NRPs, q.

The optimal parameters which are corresponding to the smallest mean of errors for
all the combinational localization algorithms and the conventional WKNN, Bayesian
inference, and KNN are shown in Table 1.

From Table 1, we can observe that: (i) by using the integrated database, most of the
combinational localization algorithms achieves lower mean of errors compared to C-W,
C-B, and C-K; and (ii) the lowest mean of errors, 2.2946 m, is obtained by KbK. On
this basis, the integrated physical neighborhood and location fingerprinting database is

Fig. 1. Experimental layout.

Fig. 2. CDFs of errors by KbW, WbB, BbK, C-W, C-B, and C-K.
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proved to be able to enhance the accuracy of the conventional indoor WLAN RSS
fingerprint based localization algorithms.

Finally, to verify the efficiency of the modified Bayesian inference for indoor
WLAN RSS fingerprint based localization, we compare the CDFs of errors by C-B,
WbB, and the WbB using the modified Bayesian inference. In Fig. 3, we find that:
(i) the C-B performs poorest in localization accuracy with the probabilities of errors
within 3 m lower than 60%; (ii) compared to the C-B, the higher localization accuracy
is achieved by using the proposed WbB with the probabilities of errors within 3 m
more than 70%; and (iii) there is a further improvement in localization accuracy when
the WbB using the modified Bayesian inference is adopted.

5 Conclusion

A novel approach to improve the accuracy of the indoor WLAN RSS fingerprint based
localization by using the integrated physical neighborhood and location fingerprinting
database is proposed in this paper. We not only construct location fingerprinting

Table 1. Parameters vs. Errors

Algorithms Optimal parameters Mean of errors (m)

KbW k = 9, r = 3, c = 5, q = 17 2.2962
WbW k = 5, r = 5, c = 4, q = 17 2.3416
BbW k = 17, r = 3, c = 2, q = 5 3.1147
C-W k = 9 2.5213
KbB k = 9, r = 3, c = 5, q = 1 2.5333
WbB k = 5, r = 5, c = 4, q = 17 2.4483
BbB k = 17, r = 3, c = 2, q = 5 3.3674
C-B k = 7 3.4197
KbK k = 9, r = 3, c = 5, q = 17 2.2946
WbK k = 5, r = 5, c = 4, q = 17 2.3418
BbK k = 17, r = 3, c = 2, q = 5 3.1453
C-K k = 9 2.5346

Fig. 3. CDFs of errors by C-B, WbB, and the WbB using the modified Bayesian inference.
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database, but also utilize the physical adjacency relations of RPs to construct the
physical neighborhood database. The extensive experiments demonstrate that the
integration of the physical neighborhood database and location fingerprinting database
can help a lot in improving the accuracy of the widely-used KNN, WKNN, and
Bayesian inference algorithms. For the future work, the more accurate and efficient
estimation of the RSS at each NRP forms an interesting topic.
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