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Abstract. Due to the implementation ease and cost-efficiency, the
indoor Wireless Local Area Network (WLAN) fingerprint based localiza-
tion approach is preferred compared with the conventional trilateration
localization approaches. In this paper, we propose a new semi-supervised
learning algorithm based on manifold alignment with cubic spline inter-
polation to reduce the offline calibration effort for indoor WLAN local-
ization using hybrid fingerprint database. The proposed approach signif-
icantly reduces the number of labeled training samples collected at each
survey location by constructing the hybrid database via interpolation
and semi-supervised manifold learning. We carry out extensive experi-
ments in a ground-truth indoor environment to examine the localization
accuracy of the proposed approach. The experimental results demon-
strate that our approach can effectively reduce the calibration effort, as
well as achieve high localization accuracy.

Keywords: WLAN · Location fingerprint · Interpolation · Semi-
supervised learning · Manifold alignment

1 Introduction

With the development of light-weighted mobile devices, Location-based Services
(LBSs) have gained considerable attention over the last decade due to the poten-
tial in the technology and the significant challenges facing this area of research
[1]. The popular Global Positioning System (GPS) has been recognized as a
success for outdoor localization, but it is generally not applicable for the indoor
environment. The conventional indoor localization systems based on the infrared
ray [2], ultrasound [3], video [4], and Radio Frequency (RF) techniques [5–10]
have been widely studied. The RF technique has the advantage of ubiquitous
coverage by using the inexpensive Wireless Local Area Network (WLAN). Due
to the considerations of cost overhead and localization accuracy, the fingerprint
database based indoor WLAN localization has been widely studied. Two phases
are involved in the fingerprint database based indoor WLAN localization, namely
offline phase and online phase. In off-line phase, we calibrate a series of Reference
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Points (RPs) in target area, and then collect the Received Signal Strength (RSS)
measurements from hearable Access Points (APs) at each RP to construct the
fingerprint database, namely radio-map. In on-line phase, we match the newly
collected RSS measurements against the radio map to estimate target location.

Since the point-by-point RP calibration is time-consuming, we aim to reduce
the offline calibration effort, as well as maintain the high-enough localization
accuracy. The proposed approach reduces both the number of labeled samples
collected at survey points and number of survey points. However, reducing the
number of the labeled samples and survey points may result in the inaccurate
radio-map and deteriorate the localization accuracy. To solve this problem, the
proposed approach relies on the cubic spline interpolation algorithm to obtain
the predicted location fingerprints, and employs the manifold alignment (MA)
algorithm [10] to label the locations at which we collect the sequences of RSS
measurements according to the users motion traces. Since the users motion traces
can be recorded easily without the labeling process, our approach is able to
reduce the labor cost, as well as improve the accuracy of the reconstructed
fingerprint database.

The remainder of the paper is organized as follows. Section reviews some
related work. In Section, we introduce the proposed approach in detail. Section
conducts the performance evaluation under different parameters and shows the
experimental results. Finally, the conclusion is provided in Section.

2 Related Work

There are bathes of studies focusing on the indoor WLAN localization, such
as the RADAR [5] and Horus [6]. Although the approaches in [5] and [6] can
achieve high localization accuracy, a large number of RSS measurements are
required to be collected and manually labeled at survey points. Since the labeled
RSS measurements collection is time consuming and labor intensive, the exist-
ing literatures mainly focused on using the unlabeled data to reduce the time
overhead involved in offline phase. In [7], the authors addressed a label propa-
gation algorithm based semi-supervised learning approach to construct a hybrid
database of labeled and unlabeled data using the concept that the similar data
are corresponding to the similar labels. In [8], the authors proposed a hybrid
generative and discriminative semi-supervised learning algorithm by predicting
a large amount of unlabeled data to replenish the sparse labeled database, and
meanwhile the online test data are selected as the offline unlabeled data and
the labels of unlabeled data are learned from the labeled data. The authors in
[9] exploited a new approach in which a manifold-based model is built from a
batch of labeled and unlabeled data in offline phase, and then the weighted K
Nearest Neighbor (KNN) algorithm is used to estimate the target locations in
online phase. However, since the aforementioned approaches significantly depend
on the RSS measurements, the performance could be seriously degraded when
the RSS changes abruptly among the neighboring RPs. The main contribution
of this paper is that we build a more accurate and reliable radio map by using
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Fig. 1. Flow chart of the proposed approach.

the cubic spline interpolation and manifold learning algorithms to supplement
the sparse fingerprint database in indoor WLAN localization. In addition, we
propose to use the timestamp information during the process of intra-manifold
graph construction in manifold learning, which can avoid the sharp deterioration
of localization accuracy when the RSS changes abruptly.

3 Algorithm Description

3.1 Algorithm Overview

In this paper, we propose to use the cubic spline interpolation and manifold
learning algorithms to construct the hybrid fingerprint database. In concrete
terms, we rely on the cubic spline interpolation algorithm to enrich the sparse
fingerprint database. After that, we apply the manifold learning algorithm to
label the unlabeled trace locations based on the known RPs and the correspond-
ing RSS sequences. The flow chart of the proposed approach is shown in Fig. 1.

3.2 Radio Map Reconstruction

To study the performance of the proposed approach, we carry out the experi-
ments in a real indoor WLAN environment under different interpolation algo-
rithms. Figure 2 shows the mean of errors with different radios of RPs used
for the Radial Basis Functions (RBF), Linear, and Cubic Spline Interpolation
(CUBIC) interpolation algorithms respectively. From this result, we can find that
the CUBIC interpolation algorithm achieves the highest localization accuracy.

3.3 Radio Map Enrichment

Since the labeled and unlabeled data are collected in the same environment, the
RSS measurements share the similar properties of the low-dimensional manifold
[10]. Based on this, we label the unlabeled data by aligning their corresponding
manifolds in the physical location space. In concrete terms, we build two intra-
manifold graphs with respect to the labeled and unlabeled data respectively, as
well as one inter-manifold graph between them. Then, we construct the weighted
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Fig. 2. Mean of errors under different interpolation algorithms.

graph matrices to describe the relations of RSS measurements, timestamps, and
physical locations respectively, i.e., Wr, Wt, Wloc.

To build the graph matrix Wr, we simply connect each RSS vector with its
K nearest neighbors, and then assign a value to each pair of vectors by using the
heat Kernel [10], such that

Wr (i, j) =

{
e− ‖xi−xj‖2

θr , if i and j are connected
0, otherwise

(1)

where θr is the heat kernel of radio space.
The graph matrix Wt is built for the unlabeled traces by using the

timestamps. Based on the assumption that the samples collected within short
time duration are corresponding to the physically adjacent locations, we con-
struct this matrix according to the time difference between every two samples.
For the k-th trace, the Wt is defined as

Wuk
t (i, j) =

{
e− |ti−tj |2

θt , |ti − tj | ≤ Tthr

0, otherwise
(2)

where θt and Tthr are the heat kernel and threshold of time space respectively.
We build Wloc only for the labeled data with known location information.

We define that the two samples are connected when they are physically closest.
Thus, Wloc is defined as

W l
loc (i, j) =

{
e
− dist(li,lj)

2

θdist , if i and j are connected
0, otherwise

(3)

where θdist is the heat kernel of physical location space.
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After that, we construct two intra-manifold graphs for the labeled and unla-
beled data by using a relative weight α ∈ [0, 1], as shown in (4) and (5)
respectively.

W l = αW l
r + (1 − α) W l

loc (4)

Wuk = αWuk
r + (1 − α) Wuk

t (5)

Since the labeled and unlabeled data have the common feature space with RSS
measurements in the inter-manifold graph, we link the labeled and unlabeled
data by using the properties of RSS measurements.

Then, we can obtain the graph Laplacian matrices for the labeled data, unla-
beled data, and the corresponding inter-dataset respectively as follows,

Ll
Nl×Nl

= Dl − W l (6)

Luk
Tk×Tk

= Duk − Wuk (7)

Lluk
(Nl+Tk)× (Nl+Tk) =

[
Dluk −W luk

−W luk
T

Dukl

]
(8)

where Dl, Duk , Dluk , and Dukl are the diagonal matrixes with the diago-
nal elements where Dl is a diagonal matrix with diagonal elements Dl (i, i) =∑Nl

j=1 W l (i, j) (i = 1, ..., Nl), Duk is a diagonal matrix with diagonal elements
Duk (i, i) =

∑Tk

j=1 Wuk (i, j) (i = 1, ..., Tk), Dluk is a diagonal matrix with diago-
nal elements Dluk (i, i) =

∑Tk

j=1 W luk (i, j) (i = 1, ..., Nl), and Dukl is a diagonal
matrix with diagonal elements Dukl (i, i) =

∑Nl

j=1 W luk (j, i)(i = 1, ..., Tk).
We continue to combine the intra-manifold graphs with inter-manifold graph

by using a relative weight μ for manifold alignment. The composite graph
Laplacian is described as

Lk =
[

Ll 0
0 Luk

]
+ μLluk (9)

We choose the two-dimensional physical space as the common low-
dimensional latent space. By denoting the coordinate matrix for the new space
of the labeled data and k-th trace as qk ∈ R(Nl+Tk)×2, we formulate the optional
manifold alignment problem as

q̂
(h)
k = arg min

q
(h)
k

(
q
(h)
k − Y

(h)
k

)T

Jq

(
q
(h)
k − Y

(h)
k

)
+ γq

(h)T

k Lkq
(h)
k , h = 1, 2 (10)

where

Jq =
[

INl×Nl
0

0 0

]
(11)

A(h)is the h-th column of matrix A, and INl×Nl
is the Nl×Nl identity matrix.

In Yk ∈ R(Nl+Tk)×2, the previous Nl rows are the coordinates of the labeled data,
i.e., Y l = [l1, l2, ..., lNl

]T , while the latter Tkrows are the arbitrary values. Based
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on the objective function in (10), the first term stands for the fitting error of the
labeled data, while the second term enforces the smoothness of the manifold.
The parameter γ controls the relative strength of location constraint.

Then, we calculate the objective function q
(h)
k as

q
(h)
k = (Jq + γLk)

−1
JqY

(h)
k , h = 1, 2 (12)

Based on (12), we can assign location coordinates to the unlabeled data in
the low-dimensional space. Finally, after the process of labeling the unlabeled
data, we use the KNN to estimate the target locations.

4 Performance Evalution

4.1 Experimental Setup

To investigate the performance of the proposed approach, we conduct the exper-
iments in a real indoor WLAN environment with the size of 57 m by 25 m on
the fifth floor of an office building, as shown in Fig. 3. The target area is covered
by five APs. A Samsung S7568 mobile phone is selected as the receiver installed
with our developed Wi-Fi localization software. The data are stored as the TXT
files. We calibrate 73 RPs with the same interval of 3 m in three subareas, namely
Area 1, 2, and 3. In addition, we record 30 traces without location information
for the testing.

4.2 Parameters in Manifold Learning

In our approach, the parameters in manifold learning are significantly important
and require to be carefully studied. Figure 4 shows the impact of different para-
meters in manifold learning on localization errors. In Fig. 4, we can find that as
the values of θr, θt, α, and γ increase, the localization error decreases first and
then slightly increases or approximately maintains the same. For the parameter
μ, the localization error reaches the lowest when the value μ is greater than
3. Our approach achieves the best performance when the parameters θr = 50,
θt = 0.1, α = 0.1, γ = 0.1, and μ = 3, and the number of neighbors used in
manifold learning equals 4, i.e., k = 4. Since the variation of value θdist has no
impact on localization error, we set θdist = 1 in the results that follow.
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Fig. 4. Mean of errors under different parameters in manifold learning.

4.3 Localization Algorithms

We compare the Cumulative Distribution Functions (CDFs) of errors by the
proposed approach and the conventional KNN, MA, and CUBIC approaches in
Fig. 5. From this figure, we can find that our approach performs best in localiza-
tion accuracy, and meanwhile it reduces the mean of errors by 16.4 % compared
with the result without our approach.

4.4 Number of RPs

Figure 6 compares the mean of errors under different ratios of the number of
RPs by the proposed, KNN, MA, and CUBIC approaches. From this figure, we
can find that in the small ratios condition, the increase of the number of RPs
significantly reduces the localization error, whereas when the ratio is over 0.5,
the variation of the number of RPs generally has slight impact on localization
error.
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Fig. 5. CDFs of errors under different localization algorithms.
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Fig. 6. CDFs of errors under different localization algorithms.

4.5 Number of Unlabeled Traces

Figure 7 compares the mean of errors under different number of unlabeled traces
by the proposed, KNN, and CUBIC approaches. From this figure, we can find
that the increase of the number of traces reduces the localization error by the
proposed approach, and meanwhile when the number of traces is over 12, the
number of trace has slight impact on localization error.

4.6 Impact of Timestamps

Figure 8 compares the CDFs of errors with and without timestamps by the pro-
posed approach. From this figure, we can find that the localization performance
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is enhanced when the timestamp is considered. This result can be interpreted
by the fact that the timestamp of traces is able to strengthen the correlation
between the successively collected RSS measurements.

5 Conclusion

To reduce the labor effort involved in indoor WLAN fingerprint based localiza-
tion, we propose a new integrated cubic spline interpolation approach with man-
ifold learning from the low-overhead unlabeled traces of users in target environ-
ment. The experiments conducted in a real indoor WLAN environment demon-
strate that our approach can not only reduce the density of RPs used for radio
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map construction, but also improve the accuracy of indoor WLAN fingerprint
based localization. In future, the application of this approach to a larger-scale
or multi-floor indoor WLAN environment forms an interesting work.

Acknowledgment. This work was supported in part by the Program for Changjiang
Scholars and Innovative Research Team in University (IRT1299), National Nat-
ural Science Foundation of China (61301126), Special Fund of Chongqing Key Lab-
oratory (CSTC), and Fundamental and Frontier Research Project of Chongqing
(cstc2013jcyjA40041, cstc2015jcyjBX0065).

References

1. Axel, K.: Location-Based Services: Fundamentals and Operation, pp. 185–245.
Wiley, New York (2005)

2. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system.
ACM Trans. Inf. Syst. 10(1), 91–102 (1992)

3. Hazas, M., Ward, A.: A novel broadband ultrasonic location system. In: Borriello,
G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 264–280. Springer,
Heidelberg (2002). doi:10.1007/3-540-45809-3 21

4. Darrell, T., Gordon, G., Harville, M., Woodfill, J.: Integrated person tracking using
stereo, color, and pattern detection. Int. J. Comput. Vis. 37(2), 175–185 (2000)

5. Bahl, P., Padmanabhan, V.N.: RADAR: an in-building RF-based user location and
tracking system. In: IEEE INFOCOM, pp. 775–784 (2002)

6. Youssef, M., Agrawala, A.: The Horus WLAN location determination system.
Wirel. Netw. 13(3), 357–374 (2005)

7. Liu, S., Luo, H., Zou, S.: A low-cost and accurate indoor localization algorithm
using label propagation based semi-supervised learning. In: International Confer-
ence on Mobile Ad-hoc and Sensor Networks, pp. 108–111 (2009)

8. Ouyang, R., Wong, A., Lea, C., Chiang, M.: Indoor location estimation with
reduced calibration exploiting unlabeled data via hybrid generative/discriminative
learning. IEEE Trans. Mob. Comput. 11(11), 1613–1626 (2011)

9. Pan, J.J., Pan, S.J., Yin, J., Ni, L.M., Yang, Q.: Tracking mobile users in wireless
networks via semi-supervised colocalization. IEEE Trans. Pattern Anal. Mach.
Intell. 34(3), 587–600 (2012)

10. Mikhail, B., Partha, N.: Laplacian eigenmaps for dimensionality reduction and
data representation. Neural Comput. 15(6), 1373–1396 (2003)

http://dx.doi.org/10.1007/3-540-45809-3_21

	Reducing Calibration Effort for Indoor WLAN Localization Using Hybrid Fingerprint Database
	1 Introduction
	2 Related Work
	3 Algorithm Description
	3.1 Algorithm Overview
	3.2 Radio Map Reconstruction
	3.3 Radio Map Enrichment

	4 Performance Evalution
	4.1 Experimental Setup
	4.2 Parameters in Manifold Learning
	4.3 Localization Algorithms
	4.4 Number of RPs
	4.5 Number of Unlabeled Traces
	4.6 Impact of Timestamps

	5 Conclusion
	References


