A Framework to Support Interoperability
in IoT and Facilitate the Development
and Deployment of Highly Distributed

Cloud Applications

Nikos Koutsouris(@), Apostolos Voulkidis, and Kostas Tsagkaris

WINGS ICT Solutions, 336 Syggrou Avenue, 17673 Athens, Greece
{nkouts, avoulkidis, ktsagk}@wings-ict-solutions. eu

Abstract. The constantly increased variety of available hardware and software
solutions for the IoT sector is facilitating the development of novel applications,
but at the same time the lack of standardized or widely accepted means of
interaction, deployment and configuration is seriously hindering the IoT’s
potential. The ARCADIA framework is an application development paradigm
that enables the cooperation between software components designed and
implemented independently and using various technologies and platforms, so
that they can form sophisticated, distributed, cloud applications.

Keywords: Highly distributed applications - Microservice - Cloud
Unikernel - Virtualization - DevOps - Reconfiguration -+ SDN - Annotations

1 Introduction

The emerging era of cloud applications has already started and the concepts of IoT are
ready to be introduced in the modern everyday life through the deployment of a large
scope of novel applications, ranging from wearables, personal health and home
automation, to smart city solutions, public safety and transportation. During the last
years there is a proliferation of available hardware and software solutions related to
IoT, which on one hand is definitely positive, but on the other hand, it has increased
complexity in the IoT ecosystem, due to the low level of standardization and the lack of
widely accepted means of interaction. This is something justifiable and actually
expected, since manufacturers, as well as application providers, need to diversify,
innovate and minimize time-to-market while developing their products. As for the
caused heterogeneity, it can be compensated and hidden if a framework encompassing
intelligent functions is used, like the one presented in the following.

The ARCADIA framework, which is developed in the ARCADIA project [1] and is
funded by the H2020 EU programme, is a novel application development paradigm
that enables the management of applications’ configuration in a smart and dynamic
way, allowing the combination of software components designed and implemented
independently and using various technologies and platforms. The proposed framework
addresses the challenge of interoperability by introducing the Smart Controller,

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
N. Mitton et al. (Eds.): InterloT 2016/SaSelot 2016, LNICST 190, pp. 41-48, 2017.
DOI: 10.1007/978-3-319-52727-7_6

42 N. Koutsouris et al.

which incorporates several functionalities that can ensure the trustworthy interworking
of components, based on an extensible context model that describes requirements and
available options.

More information on the role and the modules of the Smart Controller is provided
in Sect. 2.2. Beforehand, Sects. 1.1 and 1.2 highlight in brief the main concepts and
technologies behind ARCADIA, while Sect. 2.1 introduces the basic parts of the
ARCADIA ecosystem. Section 3 provides details on the steps required to develop a
component, generate an application by chaining various components and then con-
figure and deploy the application on the available infrastructure. Finally there are some
conclusions on how the work should evolve in the mid and the long term. It has to be
noted that this paper presents the current work in progress in the context of the
ARCADIA project and all the described concepts will be elaborated and validated in a
set of selected use cases before the first official release of the ARCADIA framework.

1.1 Virtualization and Cloudification

Virtualization refers to the act of creating a virtual (rather than actual) version of
something, including, but not limited to, virtual computer hardware platforms, storage
devices, and computer network resources [2]. It enables the optimized utilization of
resources, as more applications and services can be packed onto the infrastructure. On
the other hand, cloud computing offers through a broad network access, a pool of
resources that can be assigned dynamically and on demand, while their usage can be
monitored, controlled and optimized. To fully exploit the merits deriving from a vir-
tualized cloud environment, it is required to go further than just porting applications
and services from running on bare metal to running on Virtual Machines (VMs).
Technologies such as containers and unikernels allow better resource and service
management by further exploiting the concept of autonomous applications and
micro-services. Unikernels are highly optimised, specialised machine images con-
structed by only using the minimum required set of operating system libraries to run an
application. Their small footprint is an important feature for a cloud application as it
reduces the cost of the deployment by using only minimal resources and increases the
security of the application by shrinking the attack surface. Moreover, the lack of
unnecessary operating system libraries allow unikernels to boot extremely fast making
them ideal for mission critical or highly available applications.

One of the most difficult and expensive tasks on legacy, monolithic applications is
scaling. Using design paradigms for cloud applications such as micro-service archi-
tecture, applications can be scaled up or down in a matter of seconds without extreme
differences in cost. Modular applications consisting of several stateless micro-services
are perfect for scaling operations and cost-effective deployment due to their autono-
mous nature. By separating data and functionality developers or service providers can
easily scale out just a part of their application by deploying more instances of said
micro services. In addition, stateless micro-services are more agile and fault tolerant
which is vital requirement for highly distributed cloud applications.

Related work is carried out in the INPUT project [3] which aims at designing a
novel infrastructure and paradigm to support Future Internet personal cloud services in

A Framework to Support Interoperability in IoT 43

a more scalable and sustainable way. The INPUT technologies intend to enable
next-generation cloud applications to go beyond classical service models, and even to
replace physical Smart Devices, usually placed in users’ homes (e.g., set-top-boxes,
etc.) or deployed around for monitoring purposes (e.g., sensors), with their virtual
images, providing them to users “as a Service.”

1.2 Management and Orchestration

In the era of cloud applications and micro-services, the ability to deliver complex and
agile applications is getting harder and harder. Such applications should be
Reconfigurable-by-Design, infrastructure independent and at the same time, resilient to
failures and easily scalable. To overcome these difficulties, management tools are
trying to simplify the deployment and scaling process by automating different aspects
of the work-flow. Service modeling tools, like Juju [4], enable developers and IT
professionals to automate mundane tasks and reduce workloads, by undertaking a big
part of the deployment process on a private or public cloud. Developers can use such
tools to create the blueprint of their application called “service graph”, where they can
define how micro-services are interacting with each other and have a general view of
application data-flow. Moreover, DevOps environments are getting more and more
difficult to manage due to the multiple Infrastructure as a Service (IaaS) providers.

Deploying a complex, service-based application on top of different infrastructures
involves more complicated tasks, like network management, that require more
sophisticated tools and frameworks. Apart from service modeling issues, different [aaS
providers mean different network requirements and configurations as well as different
policies. New development paradigms are trying to tackle such issues by leveraging the
power of software defined networks and virtualized network functions. Application
orchestration and network orchestration is an important requirement for cloud man-
agement tools and frameworks.

A related open-source system for automating deployment, scaling, and manage-
ment of containerized applications is Kubernetes [5]. It groups containers that make up
an application into logical units for easy management and discovery. It also supports
self-healing of containers, service discovery and load balancing, horizontal scalability,
batch execution and automated rollouts and rollbacks of application configurations.
Finally, it is able to orchestrate storage and allow the seamless mounting of local
storage, a public cloud provider or a network storage system.

2 The ARCADIA Platform

The ARCADIA framework [6] is a novel reconfigurable-by-design Highly Distributed
Applications (HDA) development paradigm. It takes care of multi-infrastructure
deployment, high availability requirements and automatic real-time reconfiguration of
applications. To solve such issues, ARCADIA applications are based on a
micro-service model and are governed by a sophisticated policy manager. In other
words, each ARCADIA application consists of several autonomous components,

44 N. Koutsouris et al.

which can communicate with each other based on a service graph and policy rules
defined by the developers. Each component can be stored in a public or private registry
on the ARCADIA platform and it can be re-used on other applications. To create an
ARCADIA component, developers can transform their legacy applications by either
using specific JAVA annotations if applications are java-based, or by wrapping them
using java interfaces.

JAVA annotations are used to provide meta-data to a java application, without
affecting the execution of the application itself, although they can be used for that as
well. They are pre-defined words preceded by the “@” symbol and they can be written
in many different parts of the code depending on their configuration, for example
whether they annotate methods, classes, fields, etc. Annotations are used during three
stages of the application life-cycle determined by their defined retention policy; before
compilation, during build time or on runtime. Most of the natively supported anno-
tations are discarded during compilation stage; however, ARCADIA annotations are
configured to stay past that stage and during runtime. Using the Reflection API, pro-
vided by JAVA, the ARCADIA Smart Controller can read those annotations and give
instructions to the application.

The ARCADIA Smart Controller consists of several modules such as the unikernel
generator, the deployment manager and the policy manager. The Smart Controller is
the heart of the framework and its responsibilities include, among others, network
management, policy enforcement and annotation processing.

2.1 Architecture of the ARCADIA Ecosystem

As depicted in Fig. 1, the ARCADIA Smart Controller and the repository of the
ARCADIA components form a platform that is managing the configuration, deploy-
ment, monitoring and potential reconfiguration of applications according to policies set
by developers, application providers or IaaS providers. Developers create and push
their components to the ARCADIA registry, where they can publish them with public
or private access, according to the ARCADIA context model [7]. They can use all
publicly available components to create a service graph for the application through an
innovative web-based user interface. The deployment module creates the underlying
Software Defined Network on top of different IaaS providers according to the policies
and the requirements of the components that comprise the application.

2.2 The Role of the Smart Controller

The Smart Controller (SC) is the most sophisticated module of the framework. It
contains several sub-modules that are important for many aspects of the applications
life-cycle from the development to monitoring and reconfiguration. Starting from the
development, SC is responsible for interpretation of annotation usage in a component,
finding and deploying the required dependencies of a component and finally generating
the unikernel which is the purposed-build virtual machine image for cloud deployment.
Smart Controller is infrastructure agnostic and can deploy applications on different

A Framework to Support Interoperability in IoT 45

ARCADIA Platform

:‘Smart Controller | i Repository i
i] i !
i Unikernel generator i i Spark i
|
| Deployment module |€—» Hadoop |
1
i sQL ;
|
§

1 I
I Monitoring module |

I |
E Policy module Nour component :
. j) TEEEEEE—— -\—-’

y Running components
SDN

Virtual Router Virtual Router <=1

No”

User-defined
Service graph
Virtual Router

¥ __ v N

IaaS IaaS Devices

<&

VM VM || vM VM || loT Gateway

Fig. 1. Graphical representation of the ARCADIA ecosystem, illustrating also the main modules
of the Smart Controller

infrastructure providers according to the policies defined by the developers. Moreover,
by monitoring the components, Smart Controller is responsible for scaling and
reconfiguring the application with complex optimization algorithms.

3 The ARCADIA Development Paradigm

ARCADIA framework doesn’t force developers to re-write their existing applications
from scratch, since by using specific JAVA annotations they can quickly convert a
stand-alone application to an ARCADIA-compatible component.

3.1 Creating an ARCADIA Component

In order to have a valid ARCADIA component, a minimum of four JAVA annotations
have to be used in the application; “@ArcadiaComponent” that declares the name and
the version of the component and three more that define the life-cycle management
methods to be called by the Smart Controller; however, developers can use as many
annotations as their application requires in order to offer metrics or configuration
parameters. Moreover, developers can use annotations that define dependencies of the

46 N. Koutsouris et al.

component, for example the requirement for a database or vice versa the definition of
an interface for other components to depend on it.

There aren’t any forced naming conventions and thus, there is no need for heavy
code refactoring of existing applications. For example, as shown in Fig. 2, by anno-
tating a method with “@Lifecyclelnitialize” the framework will know which method to
call before starting the component. There are similar annotations for start and stop
functions namely “@LifecycleStart” and “@LifecycleStop”.

cadiaComponent(componentname="myIoTController", componentversion="1.0.0")
wMuchﬁGmwwmmmuw{

pub11c GatewayController() {/%...x/}
ze sensor attributes, establish sensor-gateway connections, etc */
cy ch ialize
pub11c void sensorsInltlallzatlon(){ %, . .*%/}

Fig. 2. Use of annotations for managing the lifecycle of an ARCADIA component

The framework will validate the correct usage of annotations before generating the
final component. Moreover, developers can pre-validate their application by using the
ARCADIA plugin specifically developed for Eclipse Che web based IDE [8] during
their development. Each component is bundled with an agent process responsible for
controlling the component and communicating with the smart controller. The final
component is either a purposed-build unikernel that can be run under a hypervisor on
any cloud infrastructure or a simple application that can be run on bare-metal machines
like a raspberry Pi, ideal for IoT usage. Currently, ARCADIA supports virtual
machines and unikernels but it can be easily extended to support bare-metal deploy-
ments. For the scope of this project, devices must be powerful enough to host a Java
Virtual Machine (JVM).

3.2 Generating an Application Service Graph

One of the main issues with IoT applications is the huge variety of hardware and
software vendors, and more specifically the consumption of the different data types
each of them produces. With the ARCADIA framework, a component running on an
IoT gateway can consume data from different sensors, and then offer them as metrics to
the ARCADIA platform or provide an interface for other components to access them,
by using simple annotations.

Developers can then use these datasets in any way their application requires, for
example store them in a database or create a pipeline for Big Data analysis. In addition,
various public components will be available through the ARCADIA registry and can be
easily added to the service graph of the application. Moreover, an advanced policy
editor is part of the framework where developers can configure different aspects of their
application and let the Smart Controller handle the requirements, like high-availability
of a component.

A Framework to Support Interoperability in IoT 47

3.3 Configuration and Deployment Process

Configuring how individual components will communicate and interact with each other
is a challenging task, considering the different architectures of infrastructure providers.
To solve such issues, ARCADIA creates a virtual, infrastructure independent network
on top of Open Overlay Router and offers a juju-like, service graph manager. Through
this manager, developers can visualize or reconfigure the service graph of their
application, add or remove components with a simple “drag and drop” and create a
workflow for their application. Moreover, they can create complex graphs required by
many applications like Big Data clusters, and pass data through virtual functions. The
Smart Controller is responsible for deploying each component, and its dependencies,
according to the policies defined by either the developer or the infrastructure provider
and report any possible graph error, like graph loops.

4 Conclusions

Internet of Things applications can take advantage of the different features of the
ARCADIA framework. For example, by using policies, metrics and re-configuration
parameters, developers can control IoT devices like actuators or motors through the
gateway component. Moreover, the exploitation of the annotations for discovering in
the ARCADIA repository components that are necessary for implementing an appli-
cation, multiplies the available options for developers; the necessary adaptations for
ensuring interoperability are responsibility of the Smart Controller, which will set the
optimal configuration through the ARCADIA agent of the object under control.

Till the end of the project, quantitative information on the network overhead and on
aspects related to networking, like the bandwidth or latency requirements, will be
published.

Moreover, in the remaining duration of the project, the developed functionalities of
the Smart Controller will be tested and evaluated. In addition they will be enriched with
knowledge building capabilities so as to further improve their performance. The Policy
Management and Service Chaining parts will also be finalized and a fully functional
release is planned to be made available for download by the end of 2017.

Acknowledgment. The work described in this paper is being performed within the ARCADIA
project and has received funding from the European Community’s Horizon 2020 Programme
under grant agreement no. 645372.

References

The ARCADIA Horizon 2020 Project. http://arcadia-framework.eu/
Wikipedia. http://en.wikipedia.org/wiki/Virtualization

The INPUT Horizon 2020 Project. http://www.input-project.eu/
Juju Orchestrator by Canonical Ltd. https://jujucharms.com/about
Kubernetes system. http://kubernetes.io/

Ao

http://arcadia-framework.eu/
http://en.wikipedia.org/wiki/Virtualization
http://www.input-project.eu/
https://jujucharms.com/about
http://kubernetes.io/

48 N. Koutsouris et al.

6. ARCADIA Horizon 2020 Project, deliverable D2.3 — Description of the ARCADIA
Framework. http://www.arcadia-framework.eu/documentation/deliverables/

7. ARCADIA Horizon 2020 Project, deliverable D2.2 — Definition of the ARCADIA Context
Model. http://www.arcadia-framework.eu/documentation/deliverables/

8. Eclipse Che Next-Generation IDE. http://www.eclipse.org/che/

http://www.arcadia-framework.eu/documentation/deliverables/
http://www.arcadia-framework.eu/documentation/deliverables/
http://www.eclipse.org/che/

	A Framework to Support Interoperability in IoT and Facilitate the Development and Deployment of Highly Distributed Cloud Applications
	Abstract
	1 Introduction
	1.1 Virtualization and Cloudification
	1.2 Management and Orchestration

	2 The ARCADIA Platform
	2.1 Architecture of the ARCADIA Ecosystem
	2.2 The Role of the Smart Controller

	3 The ARCADIA Development Paradigm
	3.1 Creating an ARCADIA Component
	3.2 Generating an Application Service Graph
	3.3 Configuration and Deployment Process

	4 Conclusions
	Acknowledgment
	References

