
Technical Overview of F-Interop

Rémy Leone1(B), Federico Sismondi2, Thomas Watteyne1, and César Viho2

1 Inria, EVA Team, Rennes, France
{remy.leone,thomas.watteyne}@inria.fr

2 Irisa, Rennes, France
{federico.sismondi,cesar.viho}@irisa.fr

Abstract. Interoperability and conformance testing are needed to
ensure that systems behave as specified by the standards they implement.
Today, interoperability testing is done through face-to-face “interop
events”. Requiring physical presence of all parties impacts the scala-
bility of the testing, and slows down the development of standards-based
products.

F-Interop is a platform which enables remote interoperability and con-
formance testing of networking standards. This paper gives a technical
overview of the project and its software architecture. The architecture fol-
lows the event bus design pattern: generic messages are routed between
the different software components, some of these running at different
locations.

Keywords: Interoperability testing · Conformance testing · Remote
testing · Online · Platform

1 Introduction

F-Interop is a platform which provides remote interoperability and conformance
testing of network standards. F-Interop allows to reduce the time to mar-
ket of devices by providing a platform to test interoperability remotely and
autonomously to find problems sooner. It also helps communities working on
standards finding at an early stage potential interoperability problems in draft
standards.

This paper gives a technical overview of the F-Interop platform represented,
and serves as a technical companion paper to [5]. Its software architecture which
will be described in detail throughout this paper.

The remainder of this paper is organized as follows. Section 2 presents current
best practice and the associated limitations. Section 3 introduces the F-Interop
platform with a focus on the technical architecture. Section 4 presents how a test
is executed in the platform. Section 5 discusses how this architecture is suitable
for many types of test cases.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

N. Mitton et al. (Eds.): InterIoT 2016/SaSeIot 2016, LNICST 190, pp. 11–17, 2017.

DOI: 10.1007/978-3-319-52727-7 2



12 R. Leone et al.

2 Interoperability and Current Best Practice

Conformance testing determines whether a system complies to the requirements.
Conformance testing is key for having interoperable implementations, but it is
not enough on its own. For this reason, conformance testing is always comple-
mented with interoperability testing. Interoperability testing focuses on end-to-
end functionality between two systems/implementations implementing the same
standard(s).

Both conformance and interoperability testing are based on use cases which
are abstract illustrations of the typical behavior of a system. The behavior is
defined in standards, a document (usually a standard or technical specification)
from a recognized Standards Developing Organization (SDO). A Test Descrip-
tion (TD) is derived from the standard. It is a set of test cases which covers the
different behavior a standard defines. The goal of conformance and interoper-
ability tests is to run test cases, and for each generate a pass/fail verdict.

Today, interoperability events are face-to-face meetings in which vendors
bring their Implementation Under Test (IUT). The TD of the event is pre-
pared before the events and distributed to the participants. The TD contains a
list of Test Cases (TC), each of them describing a particular configuration and
a sequence of actions the participants need to follow. ETSI1 has for example
organized interoperability events for various low-power wireless protocols such
as CoAP [1,4], 6Lo(WPAN) [2]. and 6TiSCH [3].

Figure 1 gives an simple example test case for the CoAP protocol, as speci-
fied in [1]. For this test case, one CoAP client IUT issues a CoAP GET request
(the “stimuli”) to a CoAP server IUT. The CoAP Server is pre-configured to

Fig. 1. Example CoAP test case, as specified in [1].

1 The European Telecommunications Standards Institute, http://www.etsi.org/.

http://www.etsi.org/


Technical Overview of F-Interop 13

offer resource /test. A sniffer mechanisms is required to capture the different
messages exchanged. Once the CoAP transaction is over, participants then man-
ually check the format/contents of these messages, and verify that they comply
with the standards (steps 2 and 3 in Fig. 1). The test case generates a “pass”
verdict if all the “check” steps pass and the users verify that their IUTs behaved
correctly.

Hundreds of face-to-face interoperability events have taken place, resulting
in numerous standards compliant and interoperable products to hit the market.
The drawback of this approach, however, is that they are infrequent and require
engineering teams to travel. Because they typically happen only every couple
of months, even a small mistake in an implementation requires that team to
delay product release by several. Similarly, such frequent travels might cost too
much for small companies wanted to release standards-compliant products. The
net result is standards-based products take longer to hit the market, and that
consumers are often bound to proprietary products which are often faster and
cheaper to create.

The goal of F-Interop is to make conformance and interoperability testing
faster and cheaper. It does so by allowing tests to be conducted remotely and
online. A server of the Internet plays the role of a “virtual room” in which vendors
meet to test their IUTs. The IUT itself does not leave the vendor’s premises;
instead, an agent running on a computer at the vendor’s connects to the server.
The agent then remotely drives the IUT and goes through the different test
cases. This means that a vendor can launch a conformance testing session at
any time, possibly as part of its continuous integration process. Interoperability
testing means that different vendors connect to the system at the same time.

3 The F-Interop Platform

Figure 2 shows the software architecture of F-Interop. The architecture is respon-
sible for managing the testing infrastructure necessary, including provisioning the
underlying network, capturing trace, starting/stopping the different tests, and
reporting the verdicts. Through standard security mechanisms, the architecture
ensures the authentication of the different users, and the confidentiality of test
results. The following sub-sections describe the different blocks in Fig. 2.

3.1 The “Event Bus” Software Design Pattern

The F-Interop architecture is composed of different components exchanging mes-
sages throughan“EventBus”.All communication is done through thismechanism,
including control messages, raw data packets and logs. We use the RabbitMQ2

as the underlying message-passing mechanism. It acts as a secure message broker
between all the components through encrypted channels.

Each message contains a routing key and a topic which indicates how to route
this message to the relevant input queues of the components. Messages are of
2 https://www.rabbitmq.com/.

https://www.rabbitmq.com/


14 R. Leone et al.

Event BusOrchestrator

Testing tools:

– Test Execution Script
– Test Analysis Tool
– Packet Generator

Web interface

F-Interop server

AgentIUT

AMQPS

userA

Agent IUT

AMQPS

userB

Fig. 2. The F-Interop architecture.

two types: control plane and data plane. Control plane messages relate to the
management of an ongoing test session: e.g. start a sniffer, signal the start/end of
a test case, etc. Data plane messages contains the raw data exchanged between
the IUTs.

Vendors conducts interoperability tests in virtual independent “rooms”. We
use the virtual host mechanism of RabbitMQ to ensure isolation between con-
current rooms.

This architecture is modular and scalable by design. Components can be
added/deleted from the event bus without requiring further coordination. Differ-
ent components can be run on different (virtual) machines to ensure scalability.
Different components can be written in different programming languages.

3.2 Agent: Connecting Users to the Platform

The “agent” is a program a user downloads from the F-Interop website, and
which allows him/her to connect an IUT to the F-Interop server. Communication
between the agent and the server is authenticated and secure. Through the
agent, the F-Interop server can (remotely) interact with the IUT, for example
by changing configuration or injecting packets. Similarly, the agent reports events
to the server, such as sniffed packets.

3.3 The Orchestrator

The orchestrator plays a purely administrative role: it monitors the users that
are connected, activates the rooms currently in use and starts/stops the test
sessions. It is also in charge of provisioning the message broker and updating
firewall rules when test sessions are activated. It does so by spawning/killing the



Technical Overview of F-Interop 15

processes of the different components connected to the event bus. It uses the
supervisor process control system3.

3.4 Test Session

A test session can be started once the different users are connected and the
necessary components are provisioned by the orchestrator. The role of the test
session is to generate verdicts that corresponds to test cases. A test session cor-
responds to one test description. While the F-Interop platform does not impose
a particular organization of a test session (i.e. it operates as a black box which
generates test verdicts), it is typically composed of a test execution script, a test
analysis tool and (optionally) a packet generator.

Test Execution Script. The test execution script (TExS) is the code that
describes the configurations and the steps of each test case. It is a translation of
a test case of the test descriptions (TD) into machine understandable language.
Just like the TDs, the TExS describes the set of steps that need to be executed.
Typically, there are 3 types of steps:

– STIMULI: an action for stimulating the IUT (e.g. sending a CoAP message).
– CHECK: the action of validating the communication (e.g. check that the field
X is equal to value Y ).

– VERIFY: the action of verifying that an IUT behaves correctly (e.g. verify
that resource A updated its value to B).

Test Analysis Tool. The Test Analysis Tool (TAT) is the component that per-
forms the verification of traces during a test session. F-Interop provides TATs
for different protocols, which run after the message exchange is finished. The
TAT issues three types of verdicts: PASS when test purpose of the test case
is verified, FAIL when there is at least one fault, INCONCLUSIVE when the
behavior of the IUTs does not apply to the one described in the test purpose.
The architecture support TATs which perform step-by-step analysis.

TATs are created both by the F-Interop core team and by external contribu-
tors. The F-Interop API specification defines the format of the messages a TAT
will receive from the Event Bus, and the format of the messages it can produce.

Packet Generator. In some conformance tests, a packet generator component
can be used to generate packets for the IUT. This component can for example
implement the behavior of a CoAP server when the IUT implements a CoAP
client. Because it has full control over its packet generator, the F-Interop server
can purposely generate wrongly formatted messages to verify the correct behav-
ior of the IUT.

3 http://supervisord.org/.

http://supervisord.org/


16 R. Leone et al.

3.5 Web Interface

The F-Interop web interface allows the user to select a test description from a
list of available tests, start the execution of the test description and follow the
execution of the different test cases. In some cases, the web interface can request
the user to take some action (e.g. switch off a node). The web interface also
allows the user to retrieve the test report. The web interface communicates with
the rest of the system by sending/receiving message over the Event Bus.

4 Example Remote Interoperability Tests

This section shows how the F-Interop architecture is used to execute the CoAP
interoperability test from Fig. 2 between userA and userB. userA has imple-
mented a CoAP server, userB a CoAP client. They want to verify that userB’s
CoAP client can issue a CoAP GET request to userA’s CoAP server.

userA and userB agree on a date perform the interoperability testing, and
create an account on the F-Interop server. At that date, they download the
agent from the F-Interop web site, and connect it to the server using their user
credentials. Once connected, the users only interact with the F-Interop web
interface.

Fig. 3. Web interface after 7 tests have been run.



Technical Overview of F-Interop 17

On the web interface, they create a common room and select the CoAP
test description. Because the CoAP implementations of userA and userB are
computer programs, the agent of each user creates a virtual tun interface. The
tun interfaces acts as a secure tunnel between userA and userB’s agents, which
passes through the F-Interop server.

The users then follow the instructions on the web interface: userB issues a
CoAP GET request to userA’s CoAP server. During this exchange, the F-Interop
server captures the packets exchanged. The users then indicate the test is over
and verify that the exchange behaved correctly; the F-Interop server analyses
the packets exchanged and issues a verdict. Figure 3 shows the web interface.

5 Discussion

F-Interop is an ongoing project. Its architecture is not written in stone and the
F-Interop team is always looking to enhance it to be able to handle addition test
configurations. This section contains addition features being worked on.

Testbed integration. Several low-power wireless mesh testbeds exist which
contain a large number of nodes. The goal of F-Interop is to allow tests to be
run on those testbeds, for example by running the user’s firmware and a reference
firmware side-by-side on different nodes in the testbed. In that context, F-Interop
tests could be launched periodically as part of continuous integration.

Accurate end-to-end latency measurement. There is a delay between the
user premises and the F-Interop system; in some cases, this delay could code
event re-ordering and false verdicts. The F-Interop team is contemplating build-
ing a board which the users would use in their premises, and which would syn-
chronize to GPS and timestamp events with a 10–100 ns accuracy.

Energy measurement capabilities at the user. Energy consumption is an
important part of any low-power wireless product; some test cases could target
energy consumption. A board which would measure the energy consumption of
the IUT would enable a large number of addition test cases.

References

1. Bormann, C.: Test Descriptions for ETSI plugtest CoAP#4. Technical report, ETSI,
London, United Kingdom, 7–9 March 2014

2. Bormann, C.: 6Lo Test Descriptions, ETSI 6TiSCH/6lo plugtest. Technical report,
ETSI, Berlin, Germany, 17–19 July 2016

3. Palattella, M.R., Vilajosana, X., Chang, T., Watteyne, T.: 6TiSCH Interoperabil-
ity Test Descriptions for the ETSI 6TiSCH/6lo Plugtests. Technical report, ETSI,
Berlin, Germany, 17–19 July 2016

4. Shelby, Z., Hartke, K., Bormann, C.: The Constrained Application Protocol (CoAP),
June 2014

5. Ziegler, S., Fdida, S., Watteyne, T., Viho, C.: F-Interop - online conformance, inter-
operability and performance tests for the IoT. In: International Conference on Inter-
operability in IoT (InterIoT), Paris, France, EAI. Springer, 26–28 October 2016


	Technical Overview of F-Interop
	1 Introduction
	2 Interoperability and Current Best Practice
	3 The F-Interop Platform
	3.1 The ``Event Bus'' Software Design Pattern
	3.2 Agent: Connecting Users to the Platform
	3.3 The Orchestrator
	3.4 Test Session
	3.5 Web Interface

	4 Example Remote Interoperability Tests
	5 Discussion
	References


