
Estimation of Synchronization Time in Cloud
Computing Architecture

Fidan Kaya Gülağız(&) and Onur Gök

Department of Computer Science, Kocaeli University,
Umuttepe, 41380 Izmit, Kocaeli, Turkey

{fidan.kaya,ogok}@kocaeli.edu.tr

Abstract. Size of the electronic data is constantly increasing with today’s
technology. Distribution of this data is provided via servers or cloud servers.
There are some restrictions caused by network traffic and network infrastructure
between these servers. Some of these restrictions can be listed as bandwidth,
packet transmission rate, number of users that can be simultaneously answered.
These are cause problems about data traffic and efficient transfer of data. In this
thesis study, it is aimed to develop an efficient data synchronization system
architecture that is compatible with distributed proxy server/cloud server
architectures. Thus, it is aimed to optimize the traffic of created by data
synchronization.

Keywords: Distributed systems � Data synchronization � Nosql � CouchDB �
Cloud computing

1 Introduction

Along with the developments in technology, data is transferred to electronic environ-
ment. The size of the data transferred to electronic environment is increasing day by
day. The increasing size of data causes traffic in the some network architectures. In case
of the increased traffic, delays take place between the ends where data is transmitted
and re-transmissions take place because of the delays. There is a need for proxy server
based studies in order to overcome this problem or decrease the effect of this problem.

In this thesis, a synchronization method which based on proxy server/cloud server
architecture is suggested. In this architecture, proxies does not contain same data. Each
proxy server contains information belonging to its subnet and only synchronize its data
with cloud server not other proxies. However, the problem of consistency arises in such
architectures due to the storage of data in different servers (proxy and cloud servers). In
order to ensure the consistency of data,mechanisms of data synchronization is needed. For
this purpose, the synchronization traffic that will emerge between proxy servers and cloud
servers should be optimized. In the architecture to be developed, a dual synchronization
process is needed. A dual synchronization will be conducted both from cloud server to
proxy server and from proxy server to cloud server. In these architecture cloud server will
collect whole data which stored each proxy and proxies will store their specific data.

In order to store the data, a noqsl database CouchDB will be used. It is aimed to
increase the speed of access to the data by using a noqsl database. CouchDB database

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017
R. Agüero et al. (Eds.): MONAMI 2016, LNICST 191, pp. 19–30, 2017.
DOI: 10.1007/978-3-319-52712-3_2

architecture has a synchronization module in itself. With this module, it conducts the
synchronization process via multi-master computing, which is a subtype of
master-master replication. However, the mapping process here can be conducted either
on-demand (instant) or in permanent mode. In case of the preference of permanent
synchronization mode, dual synchronization of the selected servers is carried out in one
minute intervals. However, in case of an increase in the number of data and proxy
servers to be synchronized, this process will cause a serious load on the system.

A system should be developed that will carry out the synchronization process by
determining the most proper timing and without increasing the load on the system. In
this thesis, it is aimed to develop a flexible architecture that is compatible with dis-
tributed proxy server- cloud server architectures and will provide the synchronization
of data as frequent as possible.

The rest of the article is structured as follows. In the second section, proposed
method is given. In the third section, the effect of background traffic is given for
proposed distributed network architecture. Fourth section explains the selected
parameters for network analysis. Fifth section explains the simple network architecture
formed by OPNET. Conclusion and some future enhancements are given at the
conclusion section.

2 Proposed Method

The main objective of the method to be developed is to create an architecture that will
be alternative for current synchronization methods in the CouchDB database. In
CouchDB database, there are three different type synchronization methods. These are
can be listed as long polling, triggered mode and continuous mode. We want to develop
a new and intelligent polling architecture to CouchDB database. This architecture will
also determine the timing of synchronization according to network congestion in the
application layer. This architecture will detect the appropriate polling period for each
subnet according to their historical data. Also these data will give information about
user behavior in related subnet and intelligent polling method will detect synchro-
nization time according to user’s behavior. The steps to be followed for the develop-
ment of the system can be listed as below;

• Establishment of a network to simulate the distributed network architecture
• Obtaining network parameters to be used for analysis during a specific time period
• Using profile hidden markov model to analyze the obtained parameters
• Processing a synchronization control algorithm to detect synchronization time
• Repeating the second and third steps until all network is being modeled

As it can be understood from the steps, the method to be developed has two basic
modules. These are the construction of distributed network architecture and determi-
nation of mapping time. A detailed description of these modules is given in Sects. 2.1
and 2.2.

20 F. Kaya Gülağız and O. Gök

2.1 Distributed Network Architecture

The overall view of distributed network architecture to be designed is presented in
Fig. 1. In the architecture, N number of proxy servers communicates with the cloud
server. This communication is carried out via an internet cloud. The architecture seen in
the figure is giant network architecture and it is difficult to be designed in real life.
Therefore the architecture will be modeled in OPNET environment. To be compatible
with real life, after the model is set up, packet size, packet transmission frequency and
packet delay values will be determined according to the appropriate probability dis-
tributions. Then, background traffic at different rates will be added to the link between
cloud server and internet cloud. In this way, all probable situations of the network will
be tried to be modeled. When all the processes are carried out, the network architecture
to work on will be obtained.

After the architecture is designed, different data sets that model different congestion
situations in the network will be obtained. Via these data sets, an architecture that will
instantaneously model the situation of the network in a specific time will be designed.
Profile Hidden Markov Model will be used for the learning process on the obtained
data sets. In this way, the most appropriate times of the network for synchronization
will be detected by using the previous periods.

Fig. 1. General distributed network architecture

Estimation of Synchronization Time 21

2.2 Detecting Synchronization Time

There are two main methods for data transmission in the given internet environment.
These are poll and push techniques. In the poll technique, requests are sent to server
from client and information as an answer is taken from server. Poll method is a more
traditional method than push method. It is generally used to carry out planned tasks in a
time slot. As an example for the uses of the poll method, applications in which delays
in data can be neglected and data transfers in giant sizes can be given. In the push
technique, the server informs the client about the changes in information. At the same
time, the transfer of the updated information can also be carried out as a part of the
informational message. Push method is more often used for real time applications. The
loading of updates in mobile phone applications or applications in which data is
processed in only one.

In the study to be conducted, the data to be transferred is giant size data called as
bulk data. For this reason, the use of poll method will be more appropriate. However,
there is a relationship between the practicality of the data obtained in poll technique and
the traffic that emerges. Factors that negatively affect the traffic are listed below.

• The number of devices by which poll process is conducted.
• The number of objects needed for each poll process.
• The frequency of poll process.
• The current bandwidth and congestion.

Considering these factors above, it is needed to distribute the load for wide net-
works and categorize the local poll process [1]. Many researchers have examined the
issue that polling process places a burden on the system and it requires planning. Lv
and his colleagues conducted a study for the timing of poll process in optical access
networks [2]. Jacob and his colleague developed a polling mechanism that was planned
for wireless body area networks. In the study, a polling method that provides
discrete-time access was suggested. The latency times of the transmission knots was
tried to be predicted according to Karn’s algorithm logic. With the method developed,
it was shown that more realistic latency times could be obtained [3]. It is important in
cloud computing architecture whether poll or push technique is used. These methods
are used for mapping data between especially mobile devices and cloud server in cloud
computing. In mobile devices, poll method is generally needed for the first update, but
afterwards, the transmission of updates can be conducted via push method. In a study
carried out by Carvalho and his colleagues, evaluation of the use of poll and push
methods between cloud server and mobile devices was conducted. At the end of the
study, it was found that if the application doesn’t have to send more than one request in
40 min, it is appropriate to use the poll technique [4]. Li and colleagues stated that
Android applications in mobile devices use traditional poll methods. They found that
when the data draining frequency of the applied poll method is not detected accurately,
problems such as information delays, unnecessary consumption of network traffic or
unnecessary battery consumption in mobile devices may emerge [5]. Similarly, Fang
and colleagues also suggested an architecture that provided the timing of broadcast poll
approach fixed on mobile devices [6]. Saxena and colleagues suggested a hybrid
method in order to shorten the access time to data in mobile devices. They provided a

22 F. Kaya Gülağız and O. Gök

probability based approach that tried to predict the next poll time or push time sepa-
rately. With the method developed, access time to data under high system load was
shortened. Therefore, they showed that scheduled mechanisms are very useful for
access to data [7].

The CouchDB database that will be used in the suggested architecture carries out
the synchronization process via three different mechanisms. These can be listed as
continuous, triggered and long polling.

Continuous mechanism, as it can be understood from its name, runs on a perma-
nently open connection. This open connection continuously listens to CouchDB’s
Changes API, which is the modified API of CouchB. When a modification takes place
in any of databases that will be synchronized, it automatically starts the synchronization
process. When this method is conducted, real time synchronization is provided.

The second mapping mechanism, long polling, is the most effective way of polling
process. The server waits for a fixed time before it sends the response in case there will
be a modification. Therefore, it eliminates the unnecessary polling processes when
there is no modification. The method to be used before long polling is short polling
method. In the short polling process, polling is continuously carried out in fixed
intervals. Long polling has a longer poll time and aims to send modifications collec-
tively. However, short polling mechanism causes congestions in traffic. In this method,
there is a certain pre-scheduled transmission time between the transferred packets and if
there are delays in the network, the time between two control periods will be insuffi-
cient for transmission [8].

Triggered method is an alternative method for continuous and long polling meth-
ods. CouchDB runs on triggered mode as default. This system also works with short
polling logic; however it is the type of short polling that is triggered at a time. Only the
CouchDB administrator can carry out the poll process on demand. The disadvantage of
this method is that it requires constant triggering. Mapping will not be carried out
without being triggered even if there is a modification.

In this thesis study, a different method that will be an alternative for the three
synchronization mechanisms in the CouchDB structure is suggested. This method will
be a smart poll method. The frequency period of poll time will be modified according
to the situation of network by the use of this method. For this process, data that is saved
from the network at different periods and Profile Hidden Markov Model will be uti-
lized. Therefore, no time will be spent for synchronization when traffic or packet
transfer to cloud server is condensed.

3 Effect of Background Traffic on Network

In the suggested system, data to be sent has to transmit via internet cloud in order to
reach the server after leaving from LAN (Local Area Network) environment. Con-
sidering that internet is a giant environment and it is shared by a lot of different
networks, the background traffic will have a serious effect on the application. There-
fore, it is necessary to consider the effect of background traffic in the design process of
the distributed system architecture to be developed.

Estimation of Synchronization Time 23

Several researchers have studied how and to what extent the background traffic has
an effect while developing distributed architecture systems. In a study conducted by
Venkatesh and Vahdat [9], it was shown that the traffic stream in the background
affects the service and protocol behaviors. They showed that synthetic traffic models
that were used previously don’t represent the effect of the traffic that is seen in real life,
and therefore, sufficient congestion sampling cannot be obtained. Applications behave
differently when they have to compete with the background traffic. Therefore, they
carried out behavior analysis for both synthetic background traffic and real background
traffic of different applications. As a result, they found out that every application is
affected by traffic congestion to some extent depending on the type of the application.
Venkatesh and Vahdat [10], tried to conduct a new research with software called Swing
to obtain a more realistic traffic in the following years. In this study, they showed that
structural traffic models special to applications can be created successfully with Swing
software. It was proved that the traffic created by Swing is a realistic traffic under
different application, network and user circumstances. In another study carried out by
Nahum and colleagues [11], it was shown that WAN conditions have a serious effect
on servers’ performances. In this study, they showed that lost packets decrease the
performance of servers by 50% and increase the response time at the same rate. In real
life, every server in a WAN environment faces problems such as packet losses and
delays. For this reason, while evaluating the performances of servers, WAN charac-
teristics should also be considered. In the study, it is stated that packet losses take place
more often when the internet is burst. Eylen and Bazlamaçı [12] attempted to develop a
system to be able to measure unicast delays without the need for clock mapping. In this
study, they stated that background traffic is needed to obtain traffic similar to real life
traffic. Therefore, random delays were added to trial packages used in the study. In this
way, three background traffics at different rates were created by using Poisson distri-
bution. The aim here is to provide congestion at different rates. The first situation is a
high loaded traffic situation called as “heavy load/high load”. In this situation, the link
via which the transmission will be done is overloaded. In other words, more back-
ground traffic is injected to the network than the capacity of the link. There will be
congestion in this situation and queue size will increase. The second situation is “low
load” situation. In this situation, packet transmission was tried to be done with a null
transmission queue. The density of background traffic is much less than the capacity of
the link. The aim of creating traffic at this rate is to catch instant modifications in
delays. The third situation is the traffic rate called as “silence rate”. In this situation, the
rate of the traffic created equals to half of the capacity of the link. The reason for
creating this situation is to determine the presence of packets that aren’t delayed. Real
traffic was modeled with the three types of traffic created. The analysis of the developed
method was carried out more accurately under background traffic in this way. In
another study conducted by Levesque and Tipper [13], background traffic was created
to provide accurate predictions of point-to-point mapping time under asymmetric delay
conditions. The main reason for queue delays in the network is the general traffic load
of the network. If traffic load is considerably low, mapping errors will decrease at the
same rate. Mapping errors will increase along with the increase in traffic load. The
analysis of the developed method has been tested in different traffic conditions and the
effect of background traffic is clearly shown.

24 F. Kaya Gülağız and O. Gök

In these studies, it has been found out that background traffic has a serious effect on
both applications and servers. The dimension of the effect depends on several
parameters. Therefore, in order to conduct analyses of applications realistically,
background traffic should certainly be taken into consideration.

4 Determination of Parameters for Network Analysis

Packet losses and re-transmissions take place when the traffic is condensed. Conges-
tions occur in the points where the traffic is too condensed. Different versions of current
TCP transmission protocols can detect congestion situations with different ways [14].
TCP Reno, New Reno, Tahoe and SACK versions use packet losses as congestion
signals. However, noticing a packet loss can take a very long time for congestion.
During this time, more packet losses may occur due to filling of router’s buffer. TCP
Vegas, which is the last version of TCP, tries to do congestion control relying on round
time value. In TCP Vegas, pending throughput and real throughput computations are
done relying on RTT. The frame size is calculated according to results obtained from
this process. However, the inappropriate choice of parameters in frame size calculation
results in packet losses. TCP Vegas allows packet retention between 1–3 intervals in
congestion queue. When background traffic increases, this situation causes an unnec-
essary obstruction.

Mechanisms that can produce a solution before congestion occurs by detecting the
congestion situation in application level are needed for congestion detection and more
effective use of congestion prevention mechanisms in TCP. Solutions for congestion
situations in application layer can be listed as three items [15]. Response packets that
servers send to clients can be sent in big sizes. In this way, the number of packets to be
sent can be decreased. Data transmission should be schedulable so as not to collide
with each other and users who carry out simultaneous transmissions can be restricted.

The congestion situations should be detected before occurring or shortly after
occurring for the application of solutions suggested in this part. For this reason, the
parameters to be used for accurate detection of congestion situations should be
determined appropriately. There are software such as Netflow [16] and Sfolw [17]
developed by Cisco for congestion management in the application level. These soft-
ware use the following items as parameters for congestion control:

• Response time,
• Accessibility of network resources,
• Application performance,
• Jitter for video data transfer,
• Connection time,
• Throughput and
• Packet losses

In addition to these, parameters to be used in networks with a heterogonous
structure for detection of congestion are listed by Floyd as following [18].

Estimation of Synchronization Time 25

• Throughput
• Delay
• Lost packets
• Response time

These parameters are common parameters that are used for congestion detection
and congestion prevention [19]. After background traffic at different rates is created in
our study, the required congestion detection parameters of transmitted trial packages
must be registered. Four different parameters will be used in this step. These are
throughput, delay, re-transmission numbers and response time. These parameters are
standard parameters used by Cisco for congestion detection. In this step, the number of
packets pending in the queue, pending time of packets in the queue and the numbers of
re-transmission of packages are aimed to be decreased in the analysis conducted with
congestion parameters.

5 Forming Network Using OPNET

A WAN network has to be set up in order to obtain the data to be used for the study.
The screenshot of the network set up is given in Fig. 2. In the figure, we gave sample
architecture. After we obtained first results, subnet count will be increased and method
will be tested in more realistic conditions. There are four subnets in the sample net-
work. These are named as Subnet Istanbul, Test Subnet, Samsun and Erzurum. The
subnet in Istanbul stands for the subnet where the cloud server exists. Test Subnet
stands for the subnet where the network’s values of throughput, delay, response time
and re-transmission number will be registered. There is a proxy server here. The four
parameters mentioned were registered via the probe packets sent from this proxy
server.

Fig. 2. Sample network architecture that is built using OPNET

26 F. Kaya Gülağız and O. Gök

The IP Cloud in Fig. 2 stands for the internet in Turkey. In order to make the
simulation realistic, latency at different rates was added to the IP cloud and data was
obtained according six different latency values. Packet discard ratio value was deter-
mined as 0.1. This value equals to loss ratio in cabled networks [20]. These two
parameters should appropriately be modeled in order to model the real traffic accurately
[21, 22]. In order to add random latencies to probe packets to be sent, random latencies
were added to the link via which the server is connected to the IP cloud. These latencies
were added according to Poisson distribution and implemented at three different ratios.
The reason for adding latencies is to create congestion and then, solve the congestion
situation [12]. The first one of the three ratios stands for high load case when the link is
overloaded. In this situation, more background packet than the capacity of the link was
injected to link. The second situation stands for low load case. In this situation, the
traffic created is much lower than the capacity of the link. The third situation is silence
rate situation. In the third situation, the traffic rate is half of the capacity of the link [23].

These three traffic ratios were applied with round bin logic during the simulation
process. In the first situation, the situation in which the transmitter queue size increases
was modeled by the application of high load situation. Then, low load situation was
applied as the second step. The transmitter queue was decreased in this way. Silence
rate situation was applied as the last step. Therefore, these three situations were
modeled under the conditions of different latencies that may occur in IP cloud. The
matlab code that was created in order to add traffic to the link is given in Table 1.

After the background traffic is added, it is necessary to determine according to
which distribution the packets to be sent from subnets in Samsun and Erzurum will be
transmitted. There are several probability distributions in literature for modeling dif-
ferent situations of the network. However, the appropriate parameters for these dis-
tributions vary along with developments in technology. Distributions that can be

Table 1. Matlab code to generate background traffic

High Load Low Load Slience Rate
x=0;
A=poissrnd(50000000,1,60);
yaz=fopen('dosya','w+');
fprintf(yaz,'seconds
bits/second\n');
for i=1:60

t = num2str(A(i));
t2=num2str(x);
t3='\t';
t5='\n';
t4 = strcat(t2,t3,t,t5);
fprintf(yaz, t4);
x=x+60;

end

B= poissrnd(900000,1,60);
for i=1:60

t = num2str(B(i));
t2=num2str(x);
t3='\t';
t5='\n';
t4 = strcat(t2,t3,t,t5);
fprintf(yaz, t4);
x=x+60;

end

C=poissrnd(30000000,1,60);
for i=1:60

t = num2str(C(i));
t2=num2str(x);
t3='\t';
t5='\n';
t4 = strcat(t2,t3,t,t5);
fprintf(yaz, t4);
x=x+60;

end

Estimation of Synchronization Time 27

appropriate for different web packets and different traffic densities were determined by
Garsva and colleagues in a study in 2014. According to the study, it was found out that
the use of Pareto distribution when the traffic is condensed and the use of Weibull or
Lognormal distributions when density is low are appropriate for sizes of transmitted
data [24]. For this reason, three different packet transmission applications that were
appropriate for the three different background traffics created were designed.

After the packet sizes mentioned above were applied to the subnets in Samsun and
Erzurum, load, throughput, response time and re-transmission number parameters of
probe packets sent from test subnet were saved in a text document. A sample
screenshot of the data obtained is given in Table 2.

6 Results

In this thesis proposal, a new method is suggested in order to solve the synchronization
problem in distributed network architectures. The main aim of the method is to add an
adaptive poll to CouchDB database, which is a noqsl database.

With the architecture to be developed, it is aimed to decrease the unnecessary
delays and re-transmissions of packets that may occur in proxy server- cloud server
architectures that require dual synchronization. In this part of the study, distributed
network architecture is implemented with low server numbers on OPNET. In this way,
data sets belonging to different time periods are obtained considering the different
situations of the network.

Table 2. A part of obtained dataset

Time
(sec.)

Response time
(sec.)

Delay (sec.) Load (bytes/sec.) Retransmission
count

0.0 #N/A #N/A 0 #N/A
1.2 #N/A #N/A 0 #N/A
2.4 #N/A #N/A 0 25
3.6 #N/A #N/A 0 50
4.8 #N/A #N/A 0 50
6.0 #N/A #N/A 0 75
7.2 #N/A #N/A 0 51
8.4 #N/A #N/A 0 100
9.6 #N/A #N/A 0 100
10.8 #N/A #N/A 0 100
12.0 0.128293420847 0.063659785183 32000.000000000018 150
13.2 0.154222547248 0.071516954689 67840.000000000044 101
14.4 0.188230963541 0.083656841361 67413.333333333372 150
15.6 0.221081878731 0.115675131047 69119.999999999942 53
16.8 0.247895827499 0.115175899488 46080.000000000029 51
18.0 0.272231176872 0.130691457222 46080.000000000029 51
19.2 0.294266277436 0.113949038065 25173.333333333347 #N/A
20.4 0.307123112638 0.11617685566 26453.33333333335 26

28 F. Kaya Gülağız and O. Gök

In the second part of the study, firstly, it is aimed to obtain the missing values in the
obtained data with statistical methods. Then, by using the Profile Hidden Markov
Model, different models will be designed for data belonging to different periods. The
congestion situations in OPNET environment will be detected from the application
layer via these models. Therefore, the synchronization time will be planned adaptively
according to the situation of the network.

References

1. Kenyon, T.: Data Networks: Routing, Security and Performance Optimization. Digital Press,
Newton (1960)

2. Lv, Y., Jiang, N., Xue, C.: Energy-efficient load adaptive polling sequence arrangement
scheme for passive optical access networks. IEEE/OSA J. Opt. Commun. Networking 7,
516–524 (2015)

3. Jacob, A.K., Jacob, L.: A discrete time polling protocol for wireless body area network. In:
IEEE International Advance Computing Conference, pp. 294–299. IEEE Press, India (2014)

4. Carvalho, S.A.L., Lima, R.N., Silva-Filho, A.G.: A pushing approach for data synchro-
nization in cloud to reduce energy consumption in mobile devices. In: Brazilian Symposium
on Computing Systems Engineering, Brazil, pp. 31–36 (2014)

5. Li, P., Chen, Y., Li, T., Wang R., Sun, J.: Implementation of cloud messaging system based
on GCM service. In: IEEE International Conference on Computational and Information
Sciences, China, pp. 1509–1512 (2013)

6. Fang, Q., Vrbsky, S.V., Dang, Y., Ni, W.: A pull-based broadcast algorithm that considers
timing constraints. In: International Conference on Parallel Processing Workshops, Canada,
pp. 46–53 (2004)

7. Saxena, N., Pinotti, C.M., Das, S.K.: A probabilistic push-pull hybrid scheduling algorithm
for asymetric wireless environment. In: IEEE Global Telecommunications Conference
Workshops, USA, pp. 5–6 (2004)

8. Aron, W., Druschel, P.: TCP implementation enhancements for improving webserver
performance. Technical report TR99-335, Rice University (1999)

9. Venkatesh, K., Vahdat A.: Evaluating distributed systems: does background traffic matter?
In: USENIX Annual Technical Conference, Boston, Massachusetts, pp. 227–240 (2008)

10. Venkatesh, K., Vahdat, A.: Swing: realistic and responsive network traffic generation.
IEEE/ACM Trans. Networking 17, 712–725 (2009)

11. Nahum, E.M., Roşu, M.C., Seshan, S., Almedia, J.: The effects of wide-area conditions on
www server performance. In: ACM Sigmetrics Conference on Measurement and Modelling
of Computer Systems, USA, pp. 16–20 (2001)

12. Eylen, T., Bazlamaçı, C.F.: One-way active delay measurement with error bounds. IEEE
Trans. Instrum. Meas. 64, 3476–3489 (2015)

13. Levesque, M., Tipper, D.: Improving the PTP synchronization accuracy under asymmetric
delay conditions. In: IEEE International Symposium on Precision Clock Synchronization for
Measurement, Control, and Communication, Germany, pp. 11–16 (2015)

14. Venkataramani, A., Kokku, R., Dahlin, M.: TCP nice: a mechanism for background
transfers. In: 5th Symposium on Operating Systems Design and Implementation, Boston,
pp. 329–343 (2002)

15. Ren, Y., Zhao, Y., Liu, P., Dou, K., Li, J.: A survey on TCP incast in data center networks.
Int. J. Commun. Syst. 27, 1160–1172 (2014)

Estimation of Synchronization Time 29

16. Cisco Systems: NetFlow Configuration Guide, Cisco IOS Release 12.4, San Jose, USA
(2011)

17. Cisco Systems: Cisco Nexus 9000 Series NX-OS System Management Configuration Guide,
Release 7.x, San Jose, USA (2015)

18. Floyd, S.: Metrics for the evaluation of congestion control mechanisms, RFC5166 (2008)
19. Mathis, M.: A framework for defining empirical bulk transfer capacity metrics, RFC3148

(2001)
20. Isobe, T., Ito, D., Akashi, D., Tsutsumi, S.: RADIC-TCP: high-speed protocol applied for

virtual private WAN. In: 18th International Conference on Telecommunications, Cyprus,
pp. 505–510 (2011)

21. Kang, S., Prodanoff, Z., Potti, P.: Performance model of a campus wireless LAN. In: Sobh,
T., Elleithy, K., Mahmood, A., Karim, M.A. (eds.) Novel Algorithms and Techniques in
Telecommunications, Automation and Industrial Electronics. Springer, Dordrecht (2008)

22. Lee, J., Payandeh, S., Trajkovic, L.: Performance evaluation of transport protocols for
internet-based teleoperation systems. In: OPNETWORK 2010, Washington DC, USA
(2010)

23. Narula, R.: Performance analysis and evaluation of hybrid network using different integrated
routing protocols. Int. J. Comput. Technol. 11, 3090–3100 (2013)

24. Garsva, E., Paulauskas, N., Grazulevicius, G., Gulbinovic, L.: Packet inter-arrival time
distribution in academic computer network. Elektron. IR Elektrotechnika 20, 87–90 (2014)

30 F. Kaya Gülağız and O. Gök

	Estimation of Synchronization Time in Cloud Computing Architecture
	Abstract
	1 Introduction
	2 Proposed Method
	2.1 Distributed Network Architecture
	2.2 Detecting Synchronization Time

	3 Effect of Background Traffic on Network
	4 Determination of Parameters for Network Analysis
	5 Forming Network Using OPNET
	6 Results
	References

