
Distributed Computing of Management Data
in a Telecommunications Network

Ville Kojola1(B), Shubham Kapoor2, and Kimmo Hätönen3

1 Center for Ubiquitous Computing, University of Oulu, Oulu, Finland
ville.kojola@student.oulu.fi

2 Department of Computer Science, University of Helsinki, Helsinki, Finland
shubham.kapoor@helsinki.fi

3 Nokia Bell Labs, Espoo, Finland
kimmo.hatonen@nokia-bell-labs.com

Abstract. In this paper, we propose a concept for distributed Manage-
ment Plane data computation and its delivery in the cellular networks.
Architecture for proposed concept is described. Calculation of Key Per-
formance Indicators is distributed to the cellular network edge, close to
the managed network elements which reduces the volume of the Manage-
ment Plane traffic. In this concept, further aggregation and refinement
of data is done in the nodes located in the operator’s cloud, close to
consumers of Management Plane data. Distribution of calculation to the
network edge reduces load at the network operator’s central database.
This paper presents an analysis to the benefits of the proposed concept.
Efficient on-demand type streaming data delivery model allows network
management functions to be plugged in to receive Management Plane
data directly without database access. A demonstrator system has been
implemented. The feasibility of the implementation is evaluated in terms
of resource consumption and latency.

Keywords: Cellular network · Key performance indicator · Network
management

1 Introduction

Cellular network elements provide a wide array of performance metrics called
performance counters. The performance counters and the Key Performance Indi-
cators (KPIs) calculated from them are essential in Performance Management
(PM) of a cellular network. Network management systems collect data to the
operation centers, where it is monitored and analysed to detect any defects or
suboptimal states in performance or service quality [12,17].

With the usage growth and development in technology, the number of net-
work elements in cellular networks is growing. The recent developments in
Fourth Generation (4G) cellular network has been towards flat Radio Access
Network (RAN) hierarchies which simplifies network but also removes hierarchi-
cal processing of PM data which was there in earlier cellular generations [15].
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

R. Agüero et al. (Eds.): MONAMI 2016, LNICST 191, pp. 146–159, 2017.

DOI: 10.1007/978-3-319-52712-3 11



Distributed Computing of Management Data 147

A centralized processing of this PM data is thus required for monitoring network,
which makes centralized models a popular choice for monitoring PM data [7].

For effective performance management and emerging concepts such as Self
Organizing Networks (SON) [3] there is a need for higher frequency performance
reporting by network elements. In a centrally operated cellular network these fac-
tors contribute to a large Management Plane (M-Plane) data volumes and high
computational complexity. In past, semantic compression and local processing
have been proposed as means to distribute computation in network management
and to reduce network management traffic [7].

The motivation of this paper is to demonstrate the concepts of local process-
ing and streaming of data in a telecommunication environment and to show how
these concepts could help to solve the problem for processing high volumes of
management plane data that is about to arise in cellular networks due to its
evolution. This paper presents a demonstrator system, which implements local
processing and refinement of cellular network performance reports in near-real-
time. The refined or aggregated performance reports are directly and instantly
transferred to network management functions in on-demand streams.

Section 2 of this paper presents the concept of our proposed solution. Section 3
presents the architecture of the demonstrator system. In Sect. 4 we discuss about
experiments conducted on our system. In Sect. 5 we discuss about achievements
of our implemented system with respect to current systems and discuss future
direction of our research. Finally, we conclude our paper in Sect. 6.

2 Concept

The objective of proposed concept is twofold: to minimize the amount of trans-
ferred data and to maximize the relative amount of up-to date information in
it. We propose two major changes to telecommunications networks management
systems to achieve this: do the needed computation close to the place where
the data is generated and let the data flow directly to applications analyzing it
in real time. These changes are inline with recent development in Mobile Edge
Computing (MEC) paradigm [2].

To do the distributed processing and to transfer its results to management
system applications, we introduce three types of components that are embedded
in the network: Data Fetchers next to data sources, Data Switches in the opera-
tor’s core cloud and Data Hubs next to the Consumers of M-Plane data, i.e., OSS
applications (see Fig. 1). This set-up corresponds to a publish-subscribe system
[10], where Data Fetchers are data publishers and Data Hubs are subscribers.

A Data Fetcher is a component that does the processing of the data next to
the place where it is being generated. In Fig. 1 that is shown to be next to each
Base Station. Data Fetcher publishes the computation results to Data Switches
that act as data brokers in this publish-subscribe architecture.

Data Switch is responsible for routing data coming from Data Fetchers to
those Data Hubs that are serving applications that have requested the data.
Data Switch does this so that data flows are not unnecessarily duplicated in



148 V. Kojola et al.

Fig. 1. Elements of the proposed concept. The novel elements of the concept are the
Data Fetcher, the Data Switch and the Data Hub.

the network and the content is published only once by a Data Fetcher. In Fig. 1
there are two Data Switches, of which the left one is routing data from two Data
Fetchers towards OSS applications 1, 2 and 3, and the right one transfers the
data flows from two Data Fetchers to the same applications but also mirrors
those flows to OSS application n in upper right corner.

Data Hub serves applications that make requests for data. In Fig. 1 three
Data Hubs are shown serving four OSS applications. A Data Hub has an inter-
face, to which an application can send a subscription, in which it specifies what
content, from where and how often it wants to receive from the network. The
Data Hub sets up the corresponding data collection and processing in appropri-
ate Data Fetchers or, if the similar request has been placed already by someone
else, mirroring of the data flow to Data Hub where the request was made. When
the Data Hub receives the data, it delivers that to applications via specified
interface.

2.1 Streams

The system aims to optimize data collection and delivery from a managed device,
such as base stations, by implementing a streaming pattern, where consumers
only needs to subscribe to a stream to start receiving data. Inspiration is drawn
from the publish/subscribe communication pattern [10] and Information-centric
networking [18], which abstract away from the traditional point-to-point con-
nectivity. Publish/subscribe pattern reduces interaction required in collecting
the data by removing the need for repeated data queries [9]. Publish/subscribe
allows publisher and subscriber to be fully decoupled in time, space and synchro-
nization, which leads to increased scalability [10]. Information-centric networking



Distributed Computing of Management Data 149

trades host centric view into a one where network mediates named content based
on the interests advertised by the nodes [18].

Two methods are used to optimize data collection, assuming that data needs
to be collected repeatedly and that multiple consumers require the data. Firstly,
request interaction is minimized with the subscription pattern. A stream of some
specific data is created when a consumer makes a subscription for the data. This
request starts data processing and delivery in a Data Fetcher, which will publish
stream content either sporadically or periodically, depending on the type of
the request. No further requests or queries are required and the Data Fetcher
continues publishing stream content on its own without the need for further
interaction.

Secondly, multiple consumers may subscribe to the same stream, which min-
imizes the need to send duplicate queries to a Data Fetcher. Therefore, the
Data Fetcher needs to send the same data only once using its limited bandwidth
resources. Further replication of the data is done in the Data Switch in operator
cloud where abundant network resources are expected. A Data Fetcher can pub-
lish the data with minimal delay, because it is in control of the publishing and
does not depend on polling from other elements. Consumers are decoupled from
Data Fetchers and each other, but they can still receive the subscribed data with
low latency.

Ideas are lent from the publish/subscribe pattern, which can also be part of
the implementation. However some changes are made. Decouplings provided by
publish/subscribe system are limited to some extent: Data Fetchers will publish
only after a stream has been created (no full decoupling in time) and streams may
be tied to some specific Data Fetchers (no full decoupling in space). Subscription
model used is based on the idea from information-centric networking of named
content which can be requested on demand.

Delivery mechanism to consumers is also simplified. Instead of consumers
needing to poll for updates and a database struggling to fulfil those requests, a
Data Hub can immediately forward each new data record it receives to subscribed
consumers. Subscribing, streaming and data replication are depicted in Fig. 2.
First, in quadrant (a) in upper left corner, an OSS application places an order
for some data coming from all three Data Fetchers in the figure. In quadrant (b)
in upper right corner, the system sets up streams of data flowing from all Data
Fetchers to the application that subscribed for it. Later another OSS application
makes the same request as is depicted in lower left quadrant (c). This makes Data
Switch in the middle to mirror established flows to the Data Hub serving that
OSS application. This is depicted in lower right quadrant (d) of Fig. 2.

2.2 Distributed Computing

As mentioned earlier, the system aims to reduce the management traffic and
the need for centralized computation of the management data in telecommu-
nications network. These two goals are considered in regards to two points of
interest, which are identified as potential bottlenecks. Firstly, management traf-
fic is mainly of concern in the link between the network element and the operator



150 V. Kojola et al.

Fig. 2. Stream initialization and delivery. In stream subscription a Data Hub forwards
stream initialization request to Data Fetchers. Stream contents are delivered through
Data Switch. Pre-existing streams can be replicated to other Data Hubs from Data
Switch.

cloud, because of the assumption of a limited bandwidth. Secondly, computa-
tional concerns relate to the centralized OSS applications, which may need to
process large volumes of data. By moving computation from a central OSS appli-
cation to Data Fetchers at the edges of the network, the data can be refined
already at the source [16].

There are various kinds of data that the network operator collects from a
network element. [12,17] Distributed computing of that data close to the source
could be leveraged in many ways. One example is raw counter data that is
measured by the network element. The network element measures thousands of
counters, which need to be collected periodically and then KPIs are calculated
from the counters. This calculation is done in the central server before inserting
KPIs to the central database. From there, the KPI data can be used to manage
the network element using the closed-loop principle [5,13].

KPIs are calculated from the counter values by using simple formulas where
one or more counter values are summed, subtracted, multiplied by a constant or
divided. By computing all the needed KPIs in the Data Fetcher, the data to be
transferred can be reduced in volume. The reduction depends on the complexity
of KPI formulas used. Some may consist of only one counter while others may
consist of a dozen. A KPI consisting of 6 counters roughly reduces the data
volume needed to transfer to a sixth. Equations 1 and 2 shows equation for a
typical KPI calculation from raw counter values [4].



Distributed Computing of Management Data 151

InitialEPSBEstabSR = ×
∑

cause RRC.SuccConnEstab.[cause]
∑

cause RRC.AttConnEstab.[cause]

×
∑

RRC.SuccConnEstab
∑

SuccConnAtt

×
∑

QCI SAEB : NbrSuccEstabInit.[QCI]
∑

QCI SAEB.NbrAttEstabInit.[QCI]
× 100

(1)

MobilitySuccessRateQCI=x =
HO.ExeSucc

HO.ExeAtt

× HO.PrepSucc.QCIQCI=x

HO.PrepAtt.QCIQCI=x
× 100[%]

(2)

3 Implementation

The system implements a middleware between the OSS applications and the
base stations. As described earlier, the main components of the system are:
Data Fetchers, Data Switches and Data Hubs. For controlling the system, there
are also Global Repositories, that help in coordinating subscriptions in the sys-
tem. The system architecture is depicted in Fig. 3. The Data Hubs communicate
directly with data consumers, i.e., OSS applications. They receive requests from
the applications and forward resulting data to those. Each Data Fetcher is paired
with a base station and communicates directly with the base station. Commu-
nication streams, such as performance data streams or log streams, are relayed
through a Data Switch layer from Data Fetchers to Data Hubs. Data Switch layer
is a network of Data Switches, publisher/subscriber brokers, which temporarily
caches data and delivers it efficiently.

We chose to use Apache Kafka [6,11] as the Data Switch layer. It includes
many features and functions that are needed in our system. We interfaced it
with base stations and OSS applications by Data Fetcher and Data Hub layers.
We do management of data streams and book keeping of their subscribers by
using a combination of Apache Zookeeper [6] and our Global Repositories.

3.1 Data Fetcher

Data Fetcher is the element that resides at the network edge close to a network
element. The computing environment of Data Fetcher is characterized by limited
CPU, RAM, bandwidth and disk resources. Data Fetcher can be in one-to-one
relation or one-to-many relation to managed network elements. Close proximity
to network elements reduces network latency and allows Data Fetcher to mini-
mize the network load resulting from the transfer of data. Data Fetcher consist
of Fetcher and Sender. Fetcher receives requests for streams and fetches data



152 V. Kojola et al.

Fig. 3. System architecture. Data Switches are implemented as Apache Kafka cluster.
Data Fetcher and Data Hub consist of subcomponents. Sender and Kafka controller
contain Apache Kafka producer and consumer clients.

from managed network element it is connected to. Fetcher fetches raw counter
data. Sender is a Kafka producer client which publishes stream contents to Kafka
broker.

Based on the consumer requests Data Fetcher receives stream requests from
Data Hubs. Requests can, for example, initiate collecting and processing of data
or cancel it. Start request contains list of names of KPIs that need to be collected.
For each KPI name a script is started which consumes counters and produces a
KPI value. When the Data Fetcher collects a new set of counters it forwards the
relevant counters to KPI scripts which then calculate the KPI values. KPI values
for a topic are then grouped together and published to Kafka. Cancel request
stops all processes involved in producing a particular stream.

Data Fetcher acts as an interface to this network element data so that no
OSS application needs to directly request the data from the network element,
but all the data that is needed in the process of network operation is fetched by
the Data Fetcher. The data that has been fetched is rapidly forwarded by the
Data Fetcher to Data Switch, so that the data does not need to be stored for
long on Data Fetcher and is fresh when it reaches OSS applications.

Before the data is sent, it can be processed in the Data Fetcher. Volume of the
data can be reduced by refining it to a format that better fits OSS application
or operator needs, such as calculating key performance indicator from the raw
counter data. Refining the data at the Data Fetcher reduces the amount of
calculation needed at the center of the operator cloud.



Distributed Computing of Management Data 153

3.2 Data Hub

Data Hub resides in the network operator cloud. The computing environment
of Data Hub is characterized by sufficient hardware and network resource. Data
Hub consists of UI Agent, Stream Manager and Kafka Controller. Kafka Con-
troller manages creation and deletion of Kafka topics. Kafka Controller com-
municates with Global Repositories to synchronize subscription counts by Data
Hubs to topics. Kafka Controller also embeds Kafka consumer. Stream Manager
corresponds to Fetcher in DF and can be used to further aggregate data, for
example by geography. UI Agent is the consumer side interface of DH, which
serves requests by consumers and delivers stream contents to the consumers.
Redundancy of Data Hub instances is possible. Data Hub receives and serves
requests made by consumers by doing book keeping in Global Repositories and
forwarding requests to appropriate Data Fetchers.

Requests can be either of stream subscription type or of one-off request-
response type. Traditional request-response model can be used to pull data from
Data Fetchers on-demand. Stream subscription subscribes a consumer to regular
or irregular stream of packets from one or more Data Fetchers which the Data
Hub delivers to the consumer.

Data delivery in the streaming model is optimized by reducing the amount of
communication required between the Data Hub and Data Fetcher. A stream is
started when a Data Hub issues a start command to one or more Data Fetchers.
When the stream is started the stream delivery continues Data Hub and Data
Fetchers decoupled. Multiple consumers can receive the same streamed data
through the same Data Hub. Multiple Data Hubs can also receive same data
from the same Data Fetchers, yet Data Fetcher only needs to send the data
once.

3.3 Data Switch

Data Switch is a publish/subscribe broker residing in the operator cloud. In our
implementation it is a Kafka broker and we implement our data streams with
Kafka topics. Task of broker is to deliver stream contents from a Data Fetcher
to one or more Data Hubs. Data published by Data Fetcher to a Data Switch
is available to Data Hubs and consumers from Data Switches so that direct
requests to the Data Fetcher can be limited.

3.4 Coordination

Information about Data Fetchers, Data Hubs and running streams is stored in
Global Repositories. Global Repositories contains the global view of the com-
ponents running in the system and is used to coordinate the different requests.
When a consumer requests a stream the involved Data Hub will communicate
with Global Repositories to decide whether a request needs to be sent to a
Data Fetcher or the stream already exists and can be subscribed to in the Data
Switches.



154 V. Kojola et al.

4 Experiments

The feasibility of the proposed system is measured in an experimental setup.
In the experimental configuration 12 Data Fetcher instances are run in separate
virtual machines of a cloud environment. Each virtual machine has 1 GB of RAM
and a 2400 MHz dual core processor. In the experiment the virtual machines are
not communicating with actual network elements, but are replaying recorded M-
Plane data of real LTE Cells which are the part of live LTE network hosted by
Nokia for research and development purposes. ZooKeeper and Kafka broker are
deployed on a separate virtual machine. Data Hubs receive data from the Data
Fetchers through the Kafka broker. Data Fetchers produce two streams of data.
One to measure the resource consumption of the Data Fetcher and the other
to emulate management data computing and collection. The usage of network,
CPU and memory resources by Data Fetchers are monitored to evaluate the
feasibility of the Data Fetcher and distributed management data computation
concepts.

Data Fetchers were set to produce different numbers of KPIs. Resource uti-
lization in each case was recorded. Mean, median and maximum values for each
resource statistic were calculated for each Data Fetcher instance. By analyzing
the results the resource requirements to produce KPIs can be estimated.

Data Hub was installed on a separate virtual machine with 4GB of RAM and
2400 MHz dual core processor. KPIs from base stations could be requested by
operator/consumer in which he is interested. Based on the request Data Hubs
subscribe to Kafka topics. Current network Performance data which we had was
sufficient to calculate 220 KPIs.

We thus created one consumer which subscribed to different number of
KPIs for different Data Fetchers. The number of KPIs requested for different
Data Fetchers increased linearly from 20 KPIs to 220 KPIs. This consumer
also subscribed for resource metrics of each Data Fetchers. Resource metrics
were reported on each Data Fetchers using Linux utility Collectl [1]. Once
these Resource consumption metrics were generated on Data Fetcher, they were
streamed to the consumer using our system. Hence we got Resource consump-
tion metrics of each Data Fetchers at a single place to analyze Data Fetcher
performance.

Raw real network performance data were replayed in each Data Fetcher for
24 h, while each Data Fetcher was calculating different number of KPIs from this
data. Resource metrics of all Data Fetchers were analyzed for this period and
statistical data was extracted from it.

This experiment gave us interesting performance insights of our concept. We
analyzed Resource metrics of Data Fetchers such as CPU utilization, Memory
Utilization and network stats for all Data Fetchers. CPU consumption increased
almost linearly with number of KPIs subscribed. We got mean and median CPU
usage figure of about 22% and 21.0046% respectively for Data Fetcher with all
220 KPIs subscribed.

There was relatively higher CPU consumption at all Data Fetchers when
streaming was started but that could be regarded as a startup overhead as CPU



Distributed Computing of Management Data 155

utilization settled back from that peak value. Free, Buffered and Cached memory
for each Data Fetchers were analyzed and provided similar findings that free
memory was decreasing with amount of KPIs subscribed. Plots in Fig. 4 shows
variation of CPU Utilization and Free Memory with number of KPIs subscribed.

(a) CPU Utilization VS Number of
KPIs

(b) Available Memory VS Number
of single KPI subscription topics

Fig. 4. CPU utilization and free memory distribution of a Data Fetcher with the num-
ber of single KPI subscription topics.

High frequency performance reporting is necessary in optimizing the future
mobile networks. Low end-to-end delay was considered a vital part of the imple-
mentation.

We calculated latency of our proposed solution and studied its variation
with the number of Kafka topics. We wanted to find out what kind of topic
set-up would be optimal to implement a data stream. For measuring latency we
installed Data Hub on same machine in which Data Fetcher was installed. This
was done in order to get precise latency figures. Topics subscriptions to same
machine’s Data Fetcher were made. Time difference between publishing of data
at Data Fetchers and receiving of this data which has traversed entire network
was measured. Single topics which subscribed for multiple KPIs and individual
topic per individual KPI were created. Latency figures for each topics were then
measured separately.

We noticed that when a stream is started the initial latency will be high
and is an outlier, but it then settles down to a “steady state” where latency
figures mostly stays in the same range. Since these performance management
data streams would be long lived, we are more interested in these steady state
latency figures. Hence we removed initial reading, which was an outlier, from our
latency records. Latency was higher with one KPI per topic scenarios. Largest
recorded steady state latency in the experiment was with scenario when 200 KPIs
were subscribed, with each KPI having a separate topic. In this case latency
at 99.99 percentile was 2.8274 s while the median latency was 0.932 s. Average
Round Trip Time (RTT) between Data Switch and Data Fetcher using ping was



156 V. Kojola et al.

measured at 3.665 ms. Figure 5 shows percentile graph for variation of latency
figures with different topics in the steady state.

Overall the end-to-end delay of the implementation appeared low and suitable
for near-real time reporting.

(a) Latency distribution for single topic with multiple KPIs

(b) Latency distribution for one KPI per topic

Fig. 5. Latency distribution with different number of topics. In the single topic case, all
calculated KPI values are sent in the same stream. In the KPI per topic case multiple
separate streams are used.

5 Discussion and Future Directions

In this section we will discuss briefly the related work and existing models in the
telecommunication management systems and achievements of our implemented
system against them. We also discuss about some future directions for our work.

In their paper [16] Simões et al. compared five different telecommunication
management system models ranging from mobile agents model to static central-
ized model based on SNMP [8]. This paper explored benefits of mobility, locality
and distribution in different models. Models which were explored were the Static
Centralized Model, the Migratory Model, the Master/Worker Model, the Sta-
tic Delegated Model and the Migratory Delegated Model. The performance of



Distributed Computing of Management Data 157

these models were estimated and measured as the time needed to complete an
operation. Tests were carried out with different network condition parameters.
Network traffic was also measured. The steady state behavior and setup cost
are compared separately. Simões et al. [16] concluded that for performance, as
measured by time it takes to perform the management operation, distribution
provides better results than locality when bandwidth is abundant. The gains of
locality became more apparent when bandwidth was limited.

Current LTE architecture have already incorporated concepts of indoor small
cells, HeNB, etc. [14] which have scaled up complexities for a cellular operator
as they need to monitor performance of these exponentially multiplying network
elements. Providing abundant bandwidth for North Bound (NB) interface or
management interface for such new base stations would be an expensive task. So
Operators would rather prefer limited bandwidth for NB interface. This means
gains of locality would be considerable in that scenario as discussed in [16].

Network traffic can be reduced in uplink direction by processing and extract-
ing out information needed from raw performance data. We did an analysis of
this compression due to extraction of information at edge. Let’s consider a single
OSS application interested in performance management data of a base station,
the data required to send in uplink from that base station can be given by
expression

Tc = h + C × i (3)

where h is the overhead introduced by the communication protocol, such
as headers, C is the number of raw counters needed to be transferred at once
and i is the size of a counter value. For the proposed system this case could be
expressed as

Td = h + K × i (4)

where K refers to the number of computed KPI values. It can be assumed
that K ≤ C, because a KPI is a extracted from one or more counters. This is
the semantic compression provided by the system. Reduction in traffic volume
depends on the complexity of the requested KPIs. A KPI can be a singular
counter value so it does not compress in that case, while more complex KPIs can
consist of dozens of counters and then the volume that needs to be transferred
may be reduced to a tenth of the original size.

Network traffic is reduced in the downlink direction by the use of pub-
lish/subscribe pattern which omits the periodical requests of polling pattern
and thus saves bandwidth in long run. The initial stream start request can be
larger in size than a simple SNMP request, but it needs to be issued only once
for a particular type of stream. For the centralized system the traffic generated
would be for a one application

Tc =
∑

(h + C × i) (5)



158 V. Kojola et al.

where C is the number of counters fetched, and i is the size needed to represent
a request of a counter. Summation represents that the request needs to be sent
before each response. Expression

Td = (h + K × i) (6)

gives the required bandwidth in the decentralized case. Here K × i represents the
size needed to request K KPIs of size i. The size i depends on the methods selected
for storing and/or transferring KPI formulas. In case multiple applications are
assumed, if they request same data, overlapping topics provide further gains for
the publish/subscribe model.

Integration of the proposed concept into a real networks managements system
is an interesting future research topic, which may propose needs for additional
open standards. One promising future standard seems to be the Mobile Edge
Computing standard. With Mobile Edge Computing (MEC) [2] being standard-
ized we believe our Data Fetchers could be installed on MEC platforms connected
to the base stations. This computation of information would not be computation-
ally heavy for MEC platform as demonstrated in Sect. 5. The proposed approach
could help operator to save precious bandwidth resources. Moreover reducing
performance traffic at network edge by computing out and sending only infor-
mation required would also decrease complexities which could otherwise arise
in a centralized system which would then have to handle enormous volumes of
raw performance data of entire network and then extract information required
by any OSS application.

There are various other future directions to evaluate performance of proposed
solution and tune it up according to telecommunication guidelines. For example,
we are planning to evaluate our system performance with up to thousands of
scattered Data Fetchers to find out its problems and limitations.

6 Conclusion

Ongoing digital evolution demands for scaling up of cellular network infrastruc-
ture with new network devices and technologies. This will complicate existing
centralized monitoring of network performance due to increase in volume of M-
Plane data. In this paper we discussed and evaluated a solution based upon
local processing of required information from raw performance data at the net-
work edge, near base stations. This information is then streamed on demand
using publish-subscribe scheme across the network through our solution. Pro-
posed solution helps in reducing M-Plane traffic both in uplink and downlink
directions and reduces complexities of centralized processing of data. Current
Evaluation of proposed solution gave encouraging results for its performance
and reduction of M-Plane data.



Distributed Computing of Management Data 159

References

1. Collectl. http://collectl.sourceforge.net/
2. ETSI-Mobile Edge Computing. http://www.etsi.org/technologies-clusters/

technologies/mobile-edge-computing
3. NGMN use cases related to self organising network. https://www.ngmn.org/

uploads/media/NGMN Use Cases related to Self Organising Network Overall
Description.pdf

4. 3GPP. Telecommunication management; Key Performance Indicators (KPI) for
Evolved Universal Terrestrial Radio Access Network (E-UTRAN): Definitions. TS
32.450, 3rd Generation Partnership Project (3GPP), August 2008

5. 3GPP. Telecommunication management; Self-Organizing Networks (SON) Policy
Network Resource Model (NRM) Integration Reference Point (IRP); Requirements
(3Gpp. TS 32.521 version 9.0.0 Release 9). TS 32.521, 3rd Generation Partnership
Project (3GPP), April 2010

6. Kafka, A. June 2016. http://kafka.apache.org/documentation.html,
7. Baldi, M., Picco., G.P.: Evaluating the tradeoffs of mobile code design paradigms in

network management applications. In: Proceedings of the International Conference
on Software Engineering, pp. 146–155. IEEE (1998)

8. Case, J., Fedor, M., Schoffstall, M., Davin, J.: RFC 1157: Simple network manage-
ment protocol (SNMP) (1990)

9. Clemm, A., Wolter, R.: Network-Embedded Management and Applications: Under-
standing Programmable Networking Infrastructure. Springer, Heidelberg (2013)

10. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of
publish/subscribe. ACM Comput. Surv. (CSUR) 35(2), 114–131 (2003)

11. Goodhope, K., Koshy, J., Kreps, J., Narkhede, N., Park, R., Rao, J., Ye, V.Y.:
Building linkedin’s real-time activity data pipeline. IEEE Data Eng. Bull. 35(2),
33–45 (2012)

12. Hertel, G.: Operation and maintenance. In: Hillebrand, F. (ed.) GSM and UMTS
The Creation of Global Mobile Communication, pp. 445–456. Wiley, Chichester
(2002)

13. Hämäläinen, S., Sanneck, H.: LTE Self-Organising Networks (SON): Network Man-
agement Automation for Operational Efficiency. Wiley, New York (2011)

14. Nossenson, R.: Long-term evolution network architecture. In: IEEE International
Conference on Microwaves, Communications, Antennas and Electronics Systems,
COMCAS, pp. 1–4. IEEE (2009)

15. Olsson, M., Mulligan, C.: EPC and 4G Packet Networks: Driving the Mobile Broad-
band Revolution. Academic Press, Amsterdam (2012)

16. Simões, P., Rodrigues, J., Silva, L., Boavida, F.: Distributed retrieval of man-
agement information: is it about mobility, locality or distribution? In: Network
Operations and Management Symposium, NOMS. IEEE/IFIP, pp. 79–94. IEEE
(2002)

17. TeleManagement Forum. Telecom operations map. Approved version 2.1. GB910.
TeleManagement Forum, March 2000

18. Trossen, D., Reed, M.J., Riihijärvi, J., Georgiades, M., Fotiou, N., Xylomenos, G.:
IP over ICN-the better IP? In: European Conference on Networks and Communi-
cations (EuCNC), pp. 413–417. IEEE (2015)

http://collectl.sourceforge.net/
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
http://www.etsi.org/technologies-clusters/technologies/mobile-edge-computing
https://www.ngmn.org/uploads/media/NGMN_Use_Cases_related_to_Self_Organising_Network_Overall_Description.pdf
https://www.ngmn.org/uploads/media/NGMN_Use_Cases_related_to_Self_Organising_Network_Overall_Description.pdf
https://www.ngmn.org/uploads/media/NGMN_Use_Cases_related_to_Self_Organising_Network_Overall_Description.pdf
http://kafka.apache.org/documentation.html

	Distributed Computing of Management Data in a Telecommunications Network
	1 Introduction
	2 Concept
	2.1 Streams
	2.2 Distributed Computing

	3 Implementation
	3.1 Data Fetcher
	3.2 Data Hub
	3.3 Data Switch
	3.4 Coordination

	4 Experiments
	5 Discussion and Future Directions
	6 Conclusion
	References


