
Simulation Framework for Distributed
SDN-Controller Architectures in OMNeT++

Nicholas Gray(B), Thomas Zinner, Steffen Gebert, and Phuoc Tran-Gia

Institute of Computer Science, University of Würzburg,
Am Hubland, 97074 Würzburg, Germany

{nicholas.gray,zinner,steffen.gebert,trangia}@informatik.uni-wuerzburg.de

Abstract. SDN introduces the separation of network control and net-
work data plane. The control plane is removed from distributed net-
work entities and logically centralized as the SDN controller. To provide
resilience and performance such a logically centralized controller may
again be physically distributed. Scenarios featuring distributed controller
architectures include data center deployments, where controller instances
synchronize states on small distances and delays, or continental WAN
deployments with long distances and delays between controllers. The
contribution of this paper is an OMNeT++ based simulation framework
for assessing the performance of distributed SDN controller architectures.
Relevant protocols and controller applications are modelled with a high
level of detail. Further, an exemplary implementation of two different
controller architectures, namely Hyperflow and Kandoo, is included. Ini-
tial results based on the provided implementations are presented.

1 Introduction

Software Defined Networking (SDN) [11] promotes the separation of the control
and data plane in communication networks. While the data plane is kept dis-
tributed, the control plane is logically centralized in a controller and serves as
interface for configuration purposes. Devices in the data plane are controlled via
the southbound API using communication protocols like OpenFlow [15]. Thus,
SDN provides a higher configuration flexibility and enables the network opera-
tor to dynamically react to changing network parameters. This results in a more
efficient resource utilization as well as in a reduction of the management efforts.
Hence, SDN is enjoying an increasing popularity and is already deployed in live
production environments, i.e. Google’s B4 backbone [9].

Despite the advantages of a centralized control plane, it also imposes new
challenges in terms of resiliency and scalability limitations. Today’s data cen-
tres, for example, are required to handle 150 million flows per second, while
current OpenFlow controllers only have the ability to process a fraction of this
demand [22]. One possible approach to address the scalability issues is to distrib-
ute the load among several controller instances while keeping the management
logically centralized. In this context a variety of distributed controller architec-
tures have been proposed, e.g., Hyperflow or Kandoo. The impact of different
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

R. Agüero et al. (Eds.): MONAMI 2016, LNICST 191, pp. 3–18, 2017.

DOI: 10.1007/978-3-319-52712-3 1



4 N. Gray et al.

controller architectures on relevant performance metrics like latencies or the
resulting architectural overhead have not been in the focus of scientific investi-
gations yet.

The contribution of this work is the design and implementation of a flexible
simulation model capable of evaluating distributed SDN controller architectures
within the OMNeT++ framework. Furthermore, we present an exemplary evalu-
ation demonstrating the capabilities of the implemented framework by analysing
the impact of distributed controller architectures on the offered traffic of the
individual controllers.

The remainder of this work is structured as follows. Section 2 summarizes rele-
vant background and related work on SDN, controller architectures, OMNeT++
and the performance evaluation of SDN. The implemented framework is intro-
duced in Sect. 3. The impact of physically distributing the control plane on the
offered control plane traffic is illustrated in Sect. 4. The paper is concluded in
Sect. 5.

2 Background

This section summarizes relevant background and related work on SDN,
OMNeT++, as well as controller architectures and their performance evaluation.

2.1 SDN and OpenFlow

The concept of Software-defined networking (SDN) has been introduced to
achieve a higher configuration flexibility as well as a reduction in the complexity
of modern network architectures. To accomplish this task, SDN is driven by four
core principles, i.e., separation of control and data plane, a logically centralized
controller, open standards and a programmable interface [11].

The communication between the SDN controller and the switch, which
reflects the separation of the control and data plane is defined by a particular
protocol i.e., OpenFlow. Whereas the SDN enabled switch is often a dedicated
networking device, the SDN controller is implemented as software and is usually
deployed on a standard server component.

Whenever an OpenFlow enabled switch receives a packet from the data plane
it first performs a lookup in its flow table to determine if a matching rule is
already existent. In the case no rule is found the switch extracts the header fields
of the packet and creates a Packet-in message, which is sent to the controller
asking for further instructions on how to handle the received packet. Once the
Packet-in message is received and processed by the SDN controller it responds
with a Packet-out message, which details how the switch should forward the
packet. In addition the controller may send a Flow-mod message, which installs
a rule into the switch’s flow table and handles future matching packet without
controller intervention.



Distributed SDN-Controller Architectures in OMNeT++ 5

2.2 OMNeT++ and INET

OMNeT++ [2] is a discrete event based network simulation framework which
follows a component based design pattern and therefore makes it easy to be
extended by third party modules. At its core, the OMNeT++ network simu-
lation framework features the concept of simple and compound modules, which
represent the individual entities of a simulation. To enable the exchange of infor-
mation during the simulation, the modules need to encode the relevant data into
Messages, which are then sent through gates to other connecting modules. The
INET Framework [1] is a third party extension to OMNeT++ and provides the
most common protocols used in the Internet. In particular, protocols such as
TCP, UDP, IPv4, IPv6, FTP and many more have been implemented. In addi-
tion, INET also provides simple applications and entities, which make use of the
underlying protocols and which can be reused within custom simulations.

2.3 Distributed Controller Architectures

To mitigate the drawbacks of the single point of failure and scalability limitations
imposed by the SDN controller, the logically centralized control plane has to be
physically distributed. This results in fundamental trade-offs like staleness of
information vs. optimality of decisions [14]. Distributed controller algorithms,
e.g., following a horizontal or a hierarchical architecture, allow to control this
trade-off by adjusting their synchronization mechanism.

Relevant horizontally distributed controller implementations are HyperFlow
[21] and OpenDaylight [17]. Whereas OpenDaylight uses a DHT which is accessi-
ble to all cluster nodes, HyperFlow stores state changing events to a distributed
file system. Kandoo [6] follows the hierarchical approach by introducing local
and root controllers. Local controllers handle all requests for which their local
domain knowledge is sufficient and forward requests to the root controller, which
require the global view of the network. In addition to Kandoo, the ONOS [3]
controller also incorporates a hierarchical design. Onix [13] and Disco [18] dif-
ferentiate between an intra and inter domain context and choose the method of
synchronization accordingly. In this context, both controllers utilize a horizontal
architecture for intra domain communication in form of a distributed data store
and for inter domain purposes a hierarchical organization is created by only
exposing aggregated information of an individual domain.

2.4 Performance Evaluation of SDN Architectures

One possibility to investigate the performance of distributed controller archi-
tectures is using a suitable test bed, e.g., Mininet [5] or DOT [20]. However,
often access to existing OpenFlow test beds is limited or they do not feature
the required network characteristics. Analytical approaches as presented in [10]
presuppose a high abstraction level and neglect specific details, e.g., protocol
behaviour on data link layer. Hence, another possible approach is to create a
simulation model featuring the desired level of detail, e.g., using OMNeT++.



6 N. Gray et al.

A detailed implementation of the OpenFlow protocol together with an inves-
tigation of the controller placement problem is provided in [12]. Although the
investigated research question is closely related to the investigation of distrib-
uted controller architectures, the provided source code could not be extended
due to a tight integration of the main controller and application responsibilities.

3 OpenFlow OMNeT++ Suite

To provide the tools needed to investigate the performance and impact of dif-
ferent SDN controller architectures in large scale networks, we implemented the
OpenFlow OMNeT++ Suite, which extends the OMNeT++ framework with
OpenFlow capabilities. For this, the OpenFlow OMNeT++ Suite provides an
SDN controller and an OpenFlow enabled switch module, which communicate
via the OpenFlow protocol. Furthermore, the suite features a variety of common
controller applications such as topology discovery, different forwarding mecha-
nisms and an ARP proxy. In addition to the common single controller approach,
the package also features a horizontally and a hierarchically distributed con-
troller architecture. The implementation of the OpenFlow OMNeT++ Suite is
based upon OMNeT++ and INET in version 4.6 and 2.5.0 respectively. The
OpenFlow OMNeT++ Suite’s content is grouped into six packages, illustrated
in Fig. 1.

Fig. 1. OpenFlow OMNeT++ suite packages.

In the following, we describe the main modules in detail. The source code
of the OMNeT++ Suite is publicly available 1 and is published under GPL v3
license.

3.1 OpenFlow

The OpenFlow package holds the main components, which consist of the Open-
Flow protocol implementation, as well as the OpenFlow enabled switch and
controller compound module.
1 https://github.com/lsinfo3/OpenFlowOMNeTSuite.

https://github.com/lsinfo3/OpenFlowOMNeTSuite


Distributed SDN-Controller Architectures in OMNeT++ 7

OpenFlow Protocol. The communication between the SDN controller and the
switch is enabled by the OpenFlow protocol, which defines a variety of messages.
For the implementation of the supported OpenFlow messages, we reused the
exact same message definitions as detailed by the OpenFlow Switch Specification
[16] in version 1.3 as far as applicable, to model the protocol as close as possible.
Since the implementation of every single OpenFlow message would be beyond
the scope of this work, we focused on messages providing the main functionality
of the protocol. At the current state, the suite supports hello, Feature-request
and Feature-reply messages to initiate the OpenFlow channel as well as Packet-
in and Packet-out messages to control the forwarding of data plane packets. At
last, Flow-mod and Port-mod messages can be used to modify the flow or port
table of an individual switch. All implemented messages are derived from the
Open Flow Message class, which merely holds the OpenFlow header. Following
this approach, additional message classes can be easily created if the necessity
arises.

OpenFlow Switch. An implementation of the OpenFlow enabled switch is
represented by the Open Flow Switch compound module. As displayed in Fig. 2,
the module is composed from multiple components, which are organized in three
groups.

Fig. 2. Open Flow Switch compound module in OMNeT++.

Whereas the right group consists of a single gate named gateDataPlane and
acts as the interface to the data plane, the group on the left is responsible for
the communication with the control plane. Since this communication is handled
via TCP, additional modules are required. The first module is a gate which
functions as an interface and allows connections to and from other modules. The
networkLayer and tcp modules are both provided by the INET framework and
mimic the functionality of their real world counterparts. The OF Switch module
implements the main logic of the OpenFlow switch and thus is connected to both
groups. This module is responsible for the connection initiation to the OpenFlow
controller as well as managing packets received from the control and data plane.



8 N. Gray et al.

The switch can be configured with a service time, which is used to sim-
ulate the time needed to process a packet received from the data plane. In
addition, the controller’s IP address and port as well as the time at which the
switch should initiate the connection to the controller can be set. The OpenFlow
connection is then established, by first completing the TCP 3-Way-Handshake
which is followed by the initiation of the OpenFlow Channel. For this the con-
troller and the switch first exchange hello messages. The controller then sends an
OFP Feature Request message, to which the OF Switch module responds with
an OFP Feature Reply.

Once a packet originating from the data plane is scheduled for execution, the
OF Switch module first checks if the flowTable property can match the received
packet. If a matching entry is returned, the packet will be handled according
to the contained instructions. Otherwise, the OF Switch module extracts the
header fields of the received packet and builds an OFP PacketIn message. It
then tries to store the packet into its buffer property and, if successful, updates
the Packet-in message with the appropriate identifier. In the case that the buffer
has reached its full capacity, the entire packet is encapsulated into the Packet-in
message. Finally, the Packet-in message is sent to the controller.

Whenever the OF Switch receives a packet from the control plane, it casts the
received packet to an Open Flow Message and then uses the OpenFlow header
to determine the type of the OpenFlow message. In case of an OFP Packet Out
message, the OF Switch module first checks if the message contains the origi-
nal frame or if the message states a buffer id. Hence, the frame is restored by
either decapsulation or by retrieving it from the buffer respectively. The module
then continues by applying the actions contained in the Packet-out message to
the frame. If the message is a OFP Flow Mod message, the OF Switch module
extracts the necessary fields for constructing a new Flow entry, which is then
stored by the flowTable property. At last OFP Port Mod messages are processed
by updating the corresponding entry in the module’s portVector property.

SDN Controller. The OpenFlow OMNeT++ Suite models the functional-
ity of the SDN controller within the Open Flow Controller compound module,
which is illustrated in Fig. 3. As OpenFlow is the de-facto standard southbound
API protocol currently in use, we will utilize the term openFlow/SDN controller
interchangeably through out this paper. The individual components can be cat-
egorized into three groups according to their functionality as depicted in Fig. 3.

Similar to the Open Flow Switch module, the category on the right is com-
posed of three modules and functions as an interface to the control plane. The
controllerApps and tcpControllerApps are used as slots, which enable the user
to load different applications to the controller. The individual applications can
extend or alter the behaviour of the controller. The OF Controller module
implements the main logic of the controller and is responsible for establish-
ing and maintaining the communication to the OpenFlow switches as well as
interacting with the assigned controller applications. Following the design archi-
tecture of most real-world controllers, the OF Controller module can support an



Distributed SDN-Controller Architectures in OMNeT++ 9

Fig. 3. Open Flow Controller compound module.

arbitrary number of applications which run on top of the main controller process.
The communication between the controller and its applications is realized by a
producer/consumer design pattern provided by OMNeT++ called signals.

Prior to the start of the simulation, the Open Flow Controller can be con-
figured with an IP address and port to listen for active OpenFlow connections.
Furthermore, a service time can be set which is applied to all received packets to
simulate the time needed by the controller to process a request from the switch.
At last, the module emits a signal at the beginning of the simulation to inform
the controller applications that it has booted and is now fully operational.

Once a packet is received from the data plane and scheduled for execution,
the module checks if it has been received from an open connection or if a new
connection has to be established. If the message is sent by an unestablished
connection, the controller forks the initial connection and initiates the OpenFlow
Channel as specified by the OpenFlow protocol. Yet, if the packet has arrived
via an existing connection, the OF Controller module emits a Packet-in signal
with an attached reference pointer to the packet. This signal is then examined
by the individual controller applications, which determine the further course of
action.

Following this design pattern, a unique signal is used to inform the applica-
tions of received and sent OpenFlow messages. Each of these signals provides a
pointer to the original message which triggered the signal. This message can then
be examined by the application for further processing. At last, the OF Controller
module provides an interface to the controller applications for sending OpenFlow
messages to its managed switches.

3.2 Controller Applications

The OF Controller module is intentionally kept simple and only manages the
connection to the switches. Hence the controller applications are required to han-
dle more complex processes. In this context, the suite allows the user to configure



10 N. Gray et al.

each individual controller to host an arbitrary number of applications, which can
extend, alter or redefine the behaviour of the controller. This approach provides
a high interchangeability and extensibility of existing and future modules.

ARPResponder. To establish a connection to another device located on the
same network, a device has to first determine the MAC address associated to the
destination IP address. Typically, the device issues an ARP [19] Request, which
is broadcasted to all devices on the network imposing additional load onto the
network, especially in large broadcast domains.

The ARPResponder controller application tries to mitigate this effect, by
caching IP-to-MAC address associations. By directly replying to ARP requests,
the load induced by ARP flooding can be reduced.

LLDPAgent. SDN controllers often rely on the Link Layer Discovery Protocol
(LLDP) to build a map of the network topology [8]. To bring this functionality to
OMNeT++ the OpenFlow OMNeT++ Suite provides the LLDPAgent controller
application and a LLDP message class. Whereas the LLDP message reflects
the structure of its real world counterpart, the LLDPAgent module sends these
messages in regular time intervals.

Hub. The Hub controller application is the simplest forwarding mechanism
provided by the OpenFlow OMNeT++ Suite. It implements a hub behaviour,
in which the switch is instructed to flood every data plane packet on all active
ports except for the ingress port.

Learning Switch. The second forwarding mechanism is implemented by the
LearningSwitch controller application. In comparison to the Hub module, this
controller application maps the observed MAC addresses to the respective ingress
port and is thus able to directly forward data plane packets towards their
destination.

LLDP Forwarding. The LLDPForwarding controller application makes use
of the topology information provided by the LLDPAgent module to forward
packets along the shortest path from source to destination. The shortest path
is computed by Dijkstra’s algorithm and the hop count is used as cost function.
Since the information of the network topology might be outdated or incomplete,
no route to the destination may be found. In this case, the module can be either
configured to drop or flood the packet. Yet, if a path is returned, the LLDPFor-
warding controller application sends a Flow-mod message to every switch along
the path to establish the forwarding route. Once all Flow-mod messages have
been sent, the module proceeds by sending a Packet-out message to the switch
which originally triggered the request, to forward the packet to the next hop.
From there on, all switches along the path have already executed the Flow-Mod
instructions and are now able to directly forward the packet to its destination
without any further controller intervention.



Distributed SDN-Controller Architectures in OMNeT++ 11

LLDP Balanced Min Hop. The last forwarding mechanism featured by the
OpenFlow OMNeT++ Suite is implemented by the BalancedMinHop module
and forwards packets along the shortest path towards the destination. Whereas
the LLDPForwarding controller application always uses the same deterministic
route, the BalancedMinHop module tries to balance the load among several
shortest paths. This not only makes better use of the provided bandwidth but
also spreads the load among the intermediary network devices, thus making this
forwarding mechanism especially beneficial for network topologies containing
numerous redundant paths to a single node.

3.3 Host Applications

Host applications are similar to the controller applications, except that they are
running on the StandardHost module, which is included in the INET framework.
In total, the OpenFlow OMNeT++ Suite features three host applications which
are presented in the following.

Ping App Random. The PingAppRandom module extends the standard ping
application provided by the INET framework. Whereas the base module sends
a ping request to a preconfigured IP address, the PingAppRandom application
selects a random host by an uniform distribution as destination.

TCP Traffic Generator. The TCPTrafficGeneratorApp module provides the
possibility to generate a realistic TCP traffic pattern. For this, the module can
be configured with an arrival rate, at which it establishes a TCP connection to
a random host in the network. Once the connection is established, the module
starts by sending an amount of data according to a flow size value which is
randomly selected from an input file.

TCP Traffic Sink. The TCPTrafficSinkApp host application is used in combi-
nation with the TCPTrafficGeneratorApp module and serves as communication
partner. Once the connection is established, the TCPTrafficSinkApp module
accepts all incoming packets, but does not process them any further. In contrast
to the TCPSink module provided by OMNeT++, our implementation actively
closes the TCP connection on reception of the last packet. This has been done
to correctly record the timestamps of the individual connection phases.

3.4 HyperFlow

In addition to a centralized controller, the OpenFlow OMNeT++ Suite pro-
vides a HyperFlow implementation, which realizes a horizontally distributed
controller architecture [21]. The implementation consists of a HyperFlowAgent
and a Hyper Flow Synchronizer compound module as well as custom messages
which establish the communication between these two entities. Furthermore,



12 N. Gray et al.

selected controller applications have been expanded to denote and replay events
which need to be synchronized. In the following we give details about the interior
working of these modules and state the changes we made to port HyperFlow to
the OMNeT++ framework.

HyperFlow Agent. The HyperFlowAgent module is implemented as controller
application and is modelled according to the original HyperFlow design [21],
despite some minor differences discussed in Sect. 3.4. It provides an interface
to the controller applications to replicate state changing events as well as syn-
chronizing the local view in regular time intervals. Furthermore, it implements
a failure discovery of controller instances.

HyperFlow Synchronizer. The original HyperFlow implementation uses a
distributed file system as synchronization mechanism, which is not available
in OMNeT++. Thus, we created the Hyper Flow Synchronizer module, which
functions as master node during the synchronization process.

In comparison to the distributed file system, the Hyper Flow Synchronizer
module needs to be placed in one fixed location in the network and imposes a
higher delay to nodes having a physical greater distance to this module. The dis-
tributed file system handles this issue more efficiently by distributing the infor-
mation from nodes which are located in closer proximity to each other. Thus, the
original HyperFlow implementation is able to distribute the information more
quickly and hence can provide a smaller window of inconsistency among all
nodes. Yet, the Hyper Flow Synchronizer module provides the unique ability to
simulate the performance of different synchronization mechanism by setting the
service time parameter to reflect the capabilities of the system of interest. Since
the overall performance of HyperFlow is decisively determined by the underly-
ing synchronization mechanism as stated in [21], the Hyper Flow Synchronizer
module enables an extensive analysis of different synchronization technologies.

HyperFlow Controller Applications. As HyperFlow requires a modification
of the controller applications to signal state changing events, this also applies
to the applications provided by the OpenFlow OMNeT++ Suite. Currently, the
suite provides two controller applications, which have been adapted to work in
combination with the HyperFlowAgent module, i.e., the HF ARPResponder and
HF LLDPAgent module. Each of these modules are derived from their respec-
tively named parent module and feature the same core functionality. In addition
to the functionality provided by the base class, the modules have been extended
to use the HyperFlowAgent module to denote state changing events and to syn-
chronize their own state by listening to emitted signals from this module.

3.5 Kandoo

In addition to HyperFlow, the OpenFlow OMNeT++ Suite features a hier-
archical distributed controller architecture, which is modelled after Kandoo.



Distributed SDN-Controller Architectures in OMNeT++ 13

Here, two distinct hierarchies of controllers are utilized to balance the load
inflicted onto the control plane. For this, the KandooAgent controller application
module can be configured to either run as local or root controller. In addition, the
suite provides a variety of controller applications, which have been expanded for
their use with Kandoo. In the following, we outline the implementation details
of these modules and describe their interactions.

Kandoo Agent. The KandooAgent module provides the core functionality and
is modelled in similarity to the original Kandoo implementation [6]. As Kandoo
differentiates between local and root controllers, the module can be configured
with the according mode of operation. If the application runs in local mode it
provides interfaces to other controller applications to forward requests to the root
controller. In case the KandooAgent module is set to root mode, it maintains
the global view of the network and handles requests from local controllers.

Kandoo Controller Applications. As stated in [6], a modification of the
controller applications is required to enable the communication between the
local and root controller instances. In addition, each application has to respect
the mode of operation in which the controller is currently running and has to
behave accordingly. In this context, we have adapted a total of four controller
applications to function properly in combination with the KandooAgent mod-
ule. Namely, these four modules are the KN ARPResponder, KN LLDPAgent,
KN LLDPForwarding and KN LLDPBalancedMinHop, which are all derived
from their respective base classes and feature the same core functionality.

3.6 Utility

The utility package of the OpenFlow OMNeT++ Suite contains two modules,
i.e., StaticSpanningTree and OpenFlowGraphAnalyzer, which assist in construct-
ing and analysing an OpenFlow enabled simulation network.

Static Spanning Tree. The StaticSpanningTree module constructs a spanning
tree on the data plane of the switches and thus enables simulations of network
topologies containing loops. This is achieved by setting the OFPPC NO FLOOD
flag on all ports, which are not part of the spanning tree.

OpenFlow Graph Analyzer. The OpenFlowGraphAnalzer module can be
placed within an OpenFlow network and extracts several graph characteristics,
i.e., the minimum, maximum and the average path length.

4 Evaluation of Distributed Controller Architectures

To analyse the offered traffic of distributed controllers architectures, we modelled
a topology after the Advanced Layer 2 Services (AL2S) test bed in the OpenFlow



14 N. Gray et al.

Fig. 4. Subset of the AL2S test bed in OMNeT++.

OMNeT++ Suite as illustrated in Fig. 4. The AL2S test bed is comprised of
multiple sites distributed throughout the United States, which are interconnected
and enable researchers to investigate different configuration mechanisms by using
Software-defined networking technologies such as OpenFlow.

In total the modelled topology features 34 Open Flow Domain nodes which
reflect the individual sites. Each domain features one OpenFlow switch module
as well as a configurable number of StandardHost modules, which has been set to
two for our investigations. The connections between the sites have been realized
in the OMNeT++ simulation framework through the use of the DistanceChan-
nel, which imposes a delay on every message according to the physical length
of the channel at a data rate of 10Gbps. We used POCO [7] to compute the
controller placements based on the minimum controller to switch latency. The
individual placements are detailed in Table 1.

In our scenario, the controllers are set to run the ARPResponder, LLDPA-
gent and the LLDPForwarding module in addition to the respective distributed
controller agents. The LLDPAgent module is configured to send LLDP messages
every 30 s, which is the default value of the Cisco IOS Operating System. The Stan-
dardHost modules are all equipped with the PingAppRandom application, which
is configured to send one ping request per second to a random host in the network.

Table 1. AL2S controller placement for a varying number of k controllers

Controller/k 1 2 3 4 5

Controller 1 Kansas City Louisville Denver Seattle Seattle

Controller 2 - Salt Lake City Portland El Paso El Paso

Controller 3 - - Atlanta Chicago Atlanta

Controller 4 - - - Atlanta Houston

Controller 5 - - - - Cleveland



Distributed SDN-Controller Architectures in OMNeT++ 15

Furthermore, ARP responses are cached for 60 s to represent the default value of
the Linux Mint Operating System. To conclude, the service time of each Open-
Flow switch is configured to 0.035 ms, which is the average processing delay per
packet as observed in [4]. For the following results we simulate a time span of
30 min and each configuration is repeated 4 times. In this configuration, a single
simulation run is completed within approximately 12 min when executed on an
Intel(R) Core(TM) i7-2600 CPU @ 3.40 GHz having 16 GB memory.

To quantify the impact of the individual controller architectures, we inves-
tigate the offered load, which is derived by dividing the number of packets per
second at the individual control plane interfaces by the controller’s service time
per packet.

4.1 HyperFlow

We start our evaluation of the offered load for the horizontal controller archi-
tecture by configuring all controllers with the HyperFlowAgent module. Here,
the placement of the synchronization module resides in Kansas City. For our
investigations, we vary the number of controllers from 1 to 5 as shown in Table 1
and for each configuration repeat the simulation with a deterministic message
service time ranging from 3 to 7 ms. In Fig. 5a, the y-axis states the offered load
and the x-axis groups the varying number of controllers by the configured service
time. Within one group the red, brown, green, blue and purple bar relate to the
scenario in which 1, 2, 3, 4 or 5 controllers are used respectively and the error
bars represent the 95% confidence interval.

For a service time of 3 and 4 ms, the offered load increases with a rising num-
ber of controllers with the exception of the 5 controller scenario. The increased

Fig. 5. Offered load for a varying number of controllers using (a) Hyperflow and
(b) Kandoo. (Colour figure online)



16 N. Gray et al.

load for the multi-controller scenarios is influenced by several impact factors in a
non-intuitive manner. This is due to the induced synchronization load, which is
augmented with each additional controller. The slight exception for 5 controllers
results from a more efficient and balanced controller placement within the AL2S
topology. Starting with a service time of 5 ms, the single controller scenario
produces the highest offered load for a given service time. This results from a
single controller no longer being able to handle the traffic in a timely manner.
Thus TCP timers of the host applications expire and force a retransmit, hence
causing more offered load. In the case of a service time of 7 ms, this effect can
also be observed for the two controller scenario.

4.2 Kandoo

We continue our investigation by analysing the impact of a hierarchical controller
architecture on the offered load. For this all controllers are configured with the
KandooAgent module and an additional root controller is placed in Kansas City.
Figure 5b displays the results. As described previously, the y-axis denotes the
offered load, whereas the individual service times are plotted on the x-axis. The
number of configured controllers is represented by the bar color and the error
bars depict the 95% confidence intervals.

Overall, the figure shows a general increase on the offered load with rising
service times. For a service time of 3 ms and 4 ms, the offered load is augmented
with additional controllers, which is caused by the synchronization overhead.
Starting with a service time of 5 ms, the single controller scenario induces more
load into the system compared to when using 2 or 3 controllers. Again, this
is caused by the resource limitation of a single controller and its incapability
to handle the offered traffic. Yet, a similar trend is observed for the 4 and 5
controller scenarios. This effect originates from the increased partitioning of
the network when adding more controllers. As Kandoo’s local controllers can
only handle requests within in their own domain and have to forward all other
requests to the root controller, the root controller may impose a bottleneck if it
is not properly shielded by the local controllers. The efficiency of shielding the
root controller is strongly related to the degree of locality contained within the
traffic pattern. By adding controllers to the cluster, the size of the individual
controller domains is decreased and the probability that the destination of a
packet is outside of the local domain increases. Thus, increasing the number
of requests to the root controller. Similar as in the single controller scenario,
an overloaded root controller may stall the processing of packets to such an
extend, that retransmissions are triggered and therefore the overall offered load
increases. At last, for longer service times of 6 ms and 7 ms, the benefits of a
multi controller implementation outweigh the partitioning overhead and hence
the offered load is lower as compared to the single controller scenario.



Distributed SDN-Controller Architectures in OMNeT++ 17

5 Conclusion

In this paper we present the OpenFlow OMNeT++ Suite, which enables the
simulation of distributed SDN controller architectures within the OMNeT++
framework. In addition to a single controller approach, the suite provides a hor-
izontal and a hierarchical distributed controller architecture, which are mod-
elled in resemblance to HyperFlow and Kandoo respectively. To demonstrate
the suite’s capabilities, we perform an exemplary evaluation highlighting perfor-
mance influence factors of these controller architectures. The results show how
partitioning, instance placement and service times may affect the offered control
plane load. Furthermore, a greater synchronization overhead is observed for a
larger number of distributed controller instances. HyperFlow achieved a better
efficiency than Kandoo in the investigated scenario. This is mostly due to the
chosen traffic pattern featuring a low degree of locality. Yet, further investiga-
tions have to be conducted to determine the exact degree of locality needed
by Kandoo as well as to determine further key performance indicators impact-
ing the individual controller architectures. For these and future evaluations, the
OpenFlow OMNeT++ Suite offers the necessary level of detail and flexibility to
provide a solid foundation.

Acknowledgment. This work has been performed in the framework of the CELTIC
EUREKA project SENDATE-PLANETS (Project ID C2015/3-1), and it is partly
funded by the German BMBF (Project ID 16KIS0474). The authors alone are respon-
sible for the content of the paper.

References

1. INET framework. http://inet.omnetpp.org/. Accessed 01 Sep 2015
2. OMNeT++: OMNet++ network simulation framework. http://www.omnetpp.

org/. Accessed 01 Sep 2015
3. Berde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz,

B., O’Connor, B., Radoslavov, P., Snow, W., et al.: ONOS: Towards an open,
distributed SDN OS. In: Proceedings of the Third Workshop on Hot Topics in
Software-defined Networking. ACM (2014)

4. Dürr, F., Kohler, T., et al.: Comparing the forwarding latency of openflow hardware
and software switches. Technical report Computer Science 2014/04. University of
Stuttgart, Faculty of Computer Science, Electrical Engineering, and Information
Technology. University of Stuttgart, Germany (2014)

5. Handigol, N., Heller, B., Jeyakumar, V., Lantz, B., McKeown, N.: Reproducible
network experiments using container-based emulation. In: Proceedings of the 8th
International Conference on Emerging Networking Experiments and Technologies,
pp. 253–264. ACM (2012)

6. Yeganeh, S.H., Ganjali, Y.: Kandoo: a framework for efficient and scalable offload-
ing of control applications. In: Proceedings of the First Workshop on Hot Topics
in Software-Defined Networks. ACM (2012)

7. Hock, D., Hartmann, M., Gebert, S., Jarschel, M., Zinner, T., Tran-Gia, P.: Pareto-
optimal resilient controller placement in SDN-based core networks. In: 25th Inter-
national Teletraffic Congress (ITC). IEEE (2013)

http://inet.omnetpp.org/
http://www.omnetpp.org/
http://www.omnetpp.org/


18 N. Gray et al.

8. IEEE Standards Association: IEEE standard for local and metropolitan area
networks-station and media access control connectivity discover. http://standards.
ieee.org/getieee802/download/802.1AB-2009.pdf. Accessed 01 Sep 2015

9. Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., et al.: B4: Experience with a globally-deployed
software defined wan. In: ACM SIGCOMM Computer Communication Review,
vol. 43. ACM (2013)

10. Jarschel, M., Oechsner, S., Schlosser, D., Pries, R., Goll, S., Tran-Gia, P.: Modeling
and performance evaluation of an openflow architecture. In: Proceedings of the
23rd International Teletraffic Congress, pp. 1–7. International Teletraffic Congress
(2011)

11. Jarschel, M., Zinner, T., Hossfeld, T., Tran-Gia, P., Kellerer, W.: Interfaces,
attributes, and use cases: A compass for SDN. IEEE Commun. Mag. 52, 210–217
(2014)

12. Klein, D., Jarschel, M.: An openflow extension for the OMNet++ INET frame-
work. In: Proceedings of the 6th International ICST Conference on Simulation
Tools and Techniques, pp. 322–329. ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering) (2013)

13. Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M.,
Ramanathan, R., Iwata, Y., Inoue, H., Hama, T., et al.: Onix: A distributed control
platform for large-scale production networks. In: OSDI 2010 (2010)

14. Levin, D., Wundsam, A., Heller, B., Handigol, N., Feldmann, A.: Logically central-
ized?: state distribution trade-offs in software defined networks. In: Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, pp. 1–6. ACM
(2012)

15. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,
J., Shenker, S., Turner, J.: Openflow: enabling innovation in campus networks.
ACM SIGCOMM Comput. Commun. Rev. 38(2), 69–74 (2008)

16. Open Networking Foundation: Openflow switch specification. https://www.
opennetworking.org/. Accessed 01 Sep 2015

17. OpenDaylight foundation: Opendaylight. https://www.opendaylight.org/.
Accessed 01 Sep 2015

18. Phemius, K., Bouet, M., Leguay, J.: DISCO: Distributed multi-domain SDN
controllers. In: 2014 IEEE Network Operations and Management Symposium
(NOMS), pp. 1–4. IEEE (2014)

19. Plummer, D.: Ethernet address resolution protocol: Or converting network proto-
col addresses to 48. bit ethernet address for transmission on ethernet hardware.
Request For Comments 826 (1982)

20. Roy, A.R., Bari, M.F., Zhani, M.F., Ahmed, R., Boutaba, R.: Design management
of DOT: a distributed openflow testbed. In: 14th IEEE/IFIP Network Operations
and Management Symposium (NOMS), May 2014

21. Tootoonchian, A., Ganjali, Y.: Hyperflow: A distributed control plane for openflow.
In: Proceedings of the 2010 Internet Network Management Conference on Research
on Enterprise Networking. USENIX Association (2010)

22. Yazici, V., Sunay, M.O., Ercan, A.O.: Controlling a software-defined network via
distributed controllers. CoRR (2014)

http://standards.ieee.org/getieee802/download/802.1AB-2009.pdf
http://standards.ieee.org/getieee802/download/802.1AB-2009.pdf
https://www.opennetworking.org/
https://www.opennetworking.org/
https://www.opendaylight.org/

	Simulation Framework for Distributed SDN-Controller Architectures in OMNeT++
	1 Introduction
	2 Background
	2.1 SDN and OpenFlow
	2.2 OMNeT++ and INET
	2.3 Distributed Controller Architectures
	2.4 Performance Evaluation of SDN Architectures

	3 OpenFlow OMNeT++ Suite
	3.1 OpenFlow
	3.2 Controller Applications
	3.3 Host Applications
	3.4 HyperFlow
	3.5 Kandoo
	3.6 Utility

	4 Evaluation of Distributed Controller Architectures
	4.1 HyperFlow
	4.2 Kandoo

	5 Conclusion
	References


