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Abstract. The Global Positioning System (GPS) aided low cost Dead
Reckoning (DR) system can provide without interruption the vehicle
position for efficient fleet management solutions in smart cities. The
Extended Kalman Filter (EKF) is generally applied for data fusion using
the sensor’s measures and the GPS position as a helper.

However, the EKF depends on the vehicle dynamic variations and
may quickly diverge during periods of GPS signal loss.

In this paper, we present a robust low cost approach using EKF and
neural networks (NN) with Particle Swarm Optimization (PSO) to reli-
ably estimate the real time vehicle position. While GPS signals are avail-
able, we train the NN with PSO on different dynamics and outage times
to learn the position errors so we can correct the future EKF predictions
during GPS signal outages. We obtain empirically an improvement of
up to 94% over the simple EKF predictions in case of GPS failures.

Keywords: Data fusion · Extended kalman filter · Global positioning
system · Intelligent transportation systems · Smart cities · Dead reck-
oning · Low cost · Neural networks · Particle swarm optimization

1 Introduction

Context. In a smart city, traditional infrastructures are merged with informa-
tion and communication technologies to face problems resulting from the rapid
urban population growth, for a sustainable economic development and a high
quality of life [1]. Based on wireless technologies, smart cities can establish intel-
ligent transportation systems (ITS) capable of carrying out effective and energy
sufficient transport services at an inexpensive cost. There are several applica-
tions of ITS including fleet management solutions that can achieve the route
optimization and reduce the fuel consumption by giving a real time situational
awareness of traffic conditions and the data for a flow of vehicles in the roads
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(e.g., ambulances and police vehicles). This will certainly require a real time vis-
ibility of an accurate vehicle position to improve the driver safety and comfort.

Positioning systems often rely on the Global Positioning System (GPS) which
provides, based on satellite signals received, the location, altitude and velocity at
a low frequency. Unfortunately, GPS receivers perform badly within tall urban
buildings or beneath dense foliage because of signal masking and multipath phe-
nomenon (i.e., multiple copies of GPS signal reach a receiver’s antenna by two or
more different paths). The combination of GPS and Inertial Navigation Systems
(INS) (i.e., autonomous systems that provide positioning, velocity, and attitude
information at high update rates) can ensure a continuous position estimate and
overcome the limitations of using each sensor individually [7,9,12]. Another pos-
sibility is the GPS enhanced with INS based on microelectromechanical systems
(MEMS) [2] since the high performance inertial sensors are very expensive. The
MEMS technology offers cost reduction coupled to small size and lower power
consumption advantages.

Practically, multisensor data fusion is performed using the Kalman filter
(KF) which is an optimal state estimator start from noisy and erroneous obser-
vations [3]. The application of the KF is restricted to linear systems; therefore
the Extended Kalman Filter (EKF) is adopted through a first-order linearization
procedure for non-linear systems.

Problem. The INS impose restrictions on the environments where they are
implemented because of their computing complexity in addition to their high
cost [2]. Furthermore, MEMS-based INS suffer from a rapid accumulation of
errors when operating in a stand-alone mode during GPS outages.

The KF performance depends on how the stochastic models of the sensors are
accurate, also it requires a priori information of system noises and measurement
errors. For those reasons, the KF predicted position tends to quickly diverge
when GPS outage occurs.

Contribution. In this paper, we suggest a new robust low cost approach using
EKF and Evolutionary Machine Learning in order to yield an optimal real time
vehicle positioning in a smart city. The sensors used are GPS enhanced with low
cost Dead Reckoning (DR) system (composed of only an odometer and a gyrom-
eter to measure angular velocity and displacement of a vehicle) which is easy
to use and keep the calculations simple. During GPS signal presence, the EKF
estimates the position while the neural networks (NN) learn the position errors.
The NN compensate the additional EKF position errors when no GPS informa-
tion exists, allowing the system to correct the EKF estimations and preventing
it from divergence. The training phase of NN is achieved through evolutionary
learning algorithms notably the Particle Swarm Optimization (PSO).

Contents. The remainder of this paper is organized as follows: In Sect. 2, we
discuss some relevant works on this topic. We present the essential background
on EKF, NN and PSO in Sect. 3. Then, we deal with the formulation of our
proposed approach in Sect. 4. In Sect. 5, we detail the experimental results.
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2 Related Works

In literature, several works related to vehicle positioning suggest the integration
of GPS and DR sensors like odometers and gyrometers [4,6]. The odometer
provides the distance travelled by the vehicle while the gyrometer measures the
angular velocity. Both of these sensors are subject to time growing errors (e.g.,
bias drift and scale factor change) in spite of their autonomy and independency
of any signal blockage. The combined system GPS/DR helps then to keep down
the odometer and gyrometer errors when GPS is available; conversely, in urban
areas where GPS signals are frequently blocked, the DR ensures a continuous
positioning.

Domenico et al. [4] propose a hybrid strategy using the EKF for the GPS,
odometer and gyrometer data fusion when GPS signal is available; inversely
the algorithm switches to an open-loop model-based estimation when it is not
available because its loss for long periods reduces the EKF accuracy and even
causes its divergence.

In their work, Georgy et al. [5] compare the performance of the KF and
the Particle Filter (PF) used as vehicle state estimators combining GPS with
the vehicle odometer and low cost MEMS-based inertial sensors; they conclude
according to empirical results that the PF outperforms KF in case of GPS masks.
Nevertheless, the increased power of PF may require a large number of particles;
this comes at the cost of higher computational complexity.

Ismaeel et al. [7] propose the use of multilayer feed-forward NN with Back-
propagation Learning Algorithm (BPLA) to integrate data from INS and GPS
for vehicular positioning and velocity information. Besides, the wavelet multi-
resolution analysis is used to compare the INS and GPS position outputs at
different resolution levels before processing them by the NN.

In [8], Hasan et al. introduce an adaptive neuro-fuzzy inference system
(ANFIS) using PSO to combine data from MEMS grade INS and GPS for a
reliable navigation solution. This network is trained during the availability of
GPS signal so to estimate the INS position errors during GPS signal blockage.

Malleswaran et al. [9] present a performance analysis of GPS/INS integra-
tion based NN trained with weight optimization techniques namely the BPLA,
Genetic Algorithm (GA), and PSO. Experimental tests indicate that the PSO
training algorithm provides superior learning capability and is well adapted for
intelligent navigation systems.

Unluckily, replacing the EKF completely by NN can be a non-optimal solu-
tion because their estimation quality can only be guaranteed if the trained data
are sufficient. Belhajem et al. claim that the use of NN only [10] or coupled to
Autoregressive Integrated Moving Average (ARIMA) models [11] can bridge the
gap in the EKF prediction mode based on data from GPS and a low cost DR
system. While GPS is available, the NN are trained on different samples to learn
the position errors, so they can correct the additional EKF drifts during GPS
signal loss.
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3 Background

In this section, we cover the background of the EKF that estimates the vehicle
position and the NN used for learning the EKF predicted position errors. Also,
we describe the principle of the PSO metaheuristic.

3.1 Extended Kalman Filter

The EKF is a non-linear version of the KF that linearizes the process and mea-
surement models about the current mean and covariance. The filter is a set of
mathematical equations which uses the process model to estimate the current
state of a system, then a correction of this estimate is performed using any
available sensor measurements.

3.1.1 Modeling
Let us consider a car-like model of a front-wheel drive vehicle. The origin M
of the body frame (rigidly attached to the vehicle) is located midway the rear
axle while the x-axis is aligned with the vehicle longitudinal axis (see Fig. 1).
For the vehicle dynamics analysis, the North-East-Down frame known also as a
navigation frame is used; so any movement related to the body frame have to
be converted to the navigation frame.

Fig. 1. Vehicle kinematic model

The kinematic equations mentioned below describe the vehicle position
denoted by (N ,E,ψ) where N and E denote the north and east components
and ψ represents the heading [6]:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Nk+1 = Nk + dsk+1.sinc(dψk+1
2 ).cos(ψk+1 + dψk+1

2 )
−dψk+1.(Dx.sin(ψk) + Dy.cos(ψk)).

Ek+1 = Ek + dsk+1.sinc(dψk+1
2 ).sin(ψk+1 + dψk+1

2 )
+dψk+1.(Dx.cos(ψk) − Dy.sin(ψk)).

ψk+1 = ψk + dψk+1.

(1)
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where

– dsk+1 is the distance traveled by the vehicle between k and k + 1;
– dψk+1 represents the heading variation corresponding to the angular velocity

between k and k + 1;
– Dx and Dy are the distances in the body frame between the GPS antenna and

the middle of the rear axle.

3.1.2 Prediction and Correction Phases
Figure 2 shows a scheme for the KF model. In our case, the state vector at
time epoch k is Xk = (Nk, Ek, ψk) and the measurement vector is Zk = (NGPSk

,
EGPSk

). Before the estimation process starts, values for the initial state X̂+
0 and

the corresponding error covariance P+
0 are assumed to be known. The prediction

mode starts by projecting the state and error covariance ahead to estimate X̂−
k

and P−
k . When new GPS measurements are available at time epoch k, the filter

starts the update mode. At this stage, the Kalman gain Kk, updated state X̂+
k

and error covariance P+
k are computed.

Fig. 2. Kalman filter model

3.2 Neural Networks

NN are a subset of Machine Learning methods acting as massively parallel dis-
tributed processors that have a natural propensity for storing experiential knowl-
edge and making it available for use [13]. Inspired by the structure and func-
tions of the human brain, NN are adaptive models that can map input patterns
to output patterns without knowing the mathematical process involved. NN
are composed of smaller units called neurons interconnected through synaptic
weights.
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The way a neural network links the input data into output data is defined
by its architecture that refers to the arrangement of neurons into layers and the
connection strengths within and between these layers [14]. In many practical
applications, the most used model is the multilayer feed-forward NN in which
all signals flow in one direction; from the input layer to the output layer passing
by one or more hidden layers. In order to train the NN, weights of each unit are
adjusted according to learning rules defined by weight optimization algorithms
like PSO.

3.3 Particle Swarm Optimization

PSO is a robust stochastic evolutionary optimization technique developed by
Kennedy and Eberhart [15]. The fundamental PSO inspiration is the social
behavior of animals namely the movement and intelligence of swarms looking
for the most fertile feeding location. In PSO, each problem to address is repre-
sented by a swarm of particles considered as candidate solutions which explore
the search space looking for the best solution.

Since the strengths of the PSO include ease of implementation, computational
efficiency, and fast convergence [16], it is used to optimize the NN connection
weights during the training phase. For this, an initial swarm is generated ran-
domly and the particles are the NN weights to learn. Each particle i moving
around the search space is charcterized by a position vector xi, a velocity vector
vi, and a position at which the best fitness pbesti is achieved by the particle.
Besides, the global best position gbesti represents the position yielding the low-
est error among all the pbesti. At each iteration, the particles of the swarm are
updated according to the following equations:

vi(k + 1) = wvi(k) + c1r1(k)(pbesti − xi(k)) + c2r2(k)(gbesti − xi(k)). (2)

xi(k + 1) = xk(t) + vi(k + 1). (3)

where c1 and c2 are the acceleration constants, r1(k) and r2(k) are random
numbers uniformly distributed in [0,1], and w is the inertia weight employed to
control the impact of the previous history of velocities on the current one. The
update process is repeated until a maximum number of iterations is reached or
an acceptable gbest is achieved [16].

4 Formulation of the Hybrid EKF/NN Approach

In this section, we present a possible vehicle prototype and the formulation of our
suggested approach in both the training and prediction phases. The prototype is
not yet implemented, however we conducted extensive simulations on the Institut
Pascal Data Sets [17] that were collected using VIPALAB, a platform equiped
with multiple sensors. We have improvements over the EKF solution between
54 % and 94 %.
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4.1 Possible Vehicle Prototype

Figure 3 illustrates the positions of the GPS and the odometer/gyrometer sen-
sors in our possible vehicle prototype; each one of them is coupled to an Arduino
nano and a Xbee module. The Arduino nano is dedicated for the treatement
while Xbee module ensures a Zigbee communication for the wireless sensor net-
works. For the data treatment, a Raspberry with Xbee communication module
is mounted on the car’s dashboard. Our vision then is to support a real imple-
mentation of this prototype.

Fig. 3. Wireless sensor network

4.2 EKF/NN Combination

Practically, the EKF receives the speed Vodom and the heading ψgyro; then com-
putes the vehicle predicted position (Npred,Epred). When new GPS measure-
ments arrive, the EKF updates the predicted position (Ncor,Ecor) as presented
in Fig. 4. However, when no GPS signal exists, the NN trained with PSO com-
pensate the additional EKF predicted position errors.

Fig. 4. EKF/NN combination
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4.2.1 Training Phase
In general, the odometer bias or gyrometer drift consists of deterministic and
stochastic parts. The former can be removed by calibration procedure while
the latter is not easy to handle due to its random nature. Accordingly, the
EKF performance depends on how the sensor components are correctly modeled;
though a perfect tuning of the filter is rarely achieved since vehicle dynamic
variations and environment changes occur oftenly. As a consequence, the EKF
performs badly during GPS signal blockage which may result in its divergence.

To circumvent the EKF deficiencies, NN are a natural choice that require no
calibration or modeling procedures. The networks are used to estimate the time-
correlated position errors during the EKF prediction phase when no GPS signal
is available. Two three-layer feed-forward NN are trained on different dynamics
using PSO, so they can help to predict the north and east error drifts.

To fully represent the vehicle dynamics, the NN inputs consist of vehicle
velocity, heading angle and time elapsed since last GPS measurement. The net-
works outputs are north and east errors which are compared to desired position
errors. Figure 5 shows the north and east networks architecture.

Fig. 5. North and east networks architecture

For training the NN, the target values used are computed as a difference
between positions provided by two parallel EKFs. One filter provides a reference
vehicle position while the other gives a predicted one by removing intentionally
the GPS signals [12]. It should be noted that the training procedure presented
in Fig. 6 is executed at the GPS sampling rate.

4.2.2 Prediction Stage
After training on different dynamics and outage times, the networks are used in
prediction mode to help compensate for real GPS outages. The inputs are sent
to the networks which provide estimates for the position errors along the north
and the east directions. Since the EKF predictions without GPS measurements
update contain errors, they are compensated by the networks outputs to form
the corrected positions. The testing procedure is shown in Fig. 7.
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Fig. 6. NN training phase

Fig. 7. NN testing phase

5 Experimental Tests and Results

In this section, we present the test vehicle prototype and the simulation results
of our suggested hybrid approach.

5.1 Test Vehicle Prototype

The performance of the proposed hybrid technique was examined with the Insti-
tut Pascal Data Sets [17]. The field test data were collected using VIPALAB,
a platform equiped with multiple sensors. In our case, the test system com-
prises three sets of an uBlox-6T-0-001 GPS receiver, an odometer and a Melexis
MLX90609-N2 gyrometer. GPS values were collected at the frequency rate of
1 Hz while the odometer/gyrometer data at 50 Hz. The road test trajectory used
is CEZEAUX-Heko (given in Fig. 8) which spans over a distance of 4.2 km during
28 min.
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Fig. 8. Field test trajectory

5.2 Simulation Results

To examine the performance of the proposed approach, the field test data were
divided into two parts. During the first 19 min, a total of seven GPS simulated
outages (given in Fig. 8) are used to train the networks. Each outage lasts 60 s
to leave the EKF position errors enough time to diverge. For the last 9 min, the
NN run in the testing mode to generate predictions of the position drifts.

The NN are trained using batch-incremental approach. For every outage, a
set of new inputs/targets are presented to train the NN using PSO to learn the
network weight parameters. The objective is to reduce the mean squared error
(MSE) between the networks outputs and the desired values. In our case study,
the north and east networks architecture chosen emprically consist of 3 inputs, 5
hidden neurons and one output while the training goal is to reach MSE less than
2.10−4 m2 given the real time constraints. Figure 9 shows the results of the training
outages while the time intervals between them are masked. It appears clearly that
the outputs of north and east networks are very close to the target values.

Fig. 9. North and east networks training results using PSO
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To investigate the performance of this hybrid method, the GPS data were
intentionally removed since there were no natural GPS outages in the field test.
The networks can then be used to provide predictions of position drifts to correct
the EKF predictions. For this purpose, they generate outputs based on dynamic
inputs and latest estimated weight parameters. Relatively, results of the GPS
test outages (presented in Fig. 8), with period lengths of 90 and 60 s, are given
in Fig. 10.

Fig. 10. North and east networks testing results using PSO

To compare the estimated position by our proposed approach and the one
of EKF, two different evaluation indicators are calculated for each outage: the
root mean square error (RMSE) and the mean absolute error (MAE). They are
expressed by the following formulas:

RMSE =

√
√
√
√ 1

n

n∑

k=1

(Ak − Fk)2. (4)

MAE =
1
n

n∑

k=1

∣
∣Ak − Fk

∣
∣ . (5)

where Ak is the actual EKF updated position by GPS measurements at time
epoch k, Fk is either the EKF predicted position or the EKF corrected position
by NN while n is the total number of predictions. These results are listed in
Tables 1 and 2 for north and east position components. By combining EKF and
NN together, the results show a significant decrease in RMSE and MAE over
the EKF method. This hybrid approach enhances the vehicle position accuracy
over the EKF predictions during GPS outages.
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Table 1. GPS test outages north improvement

Outages EKF Our approach (EKF/NN) Improvement (%)

RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m)

Outage 1 732.47 630.57 218.32 190.20 70 69

Outage 2 408.82 343.18 106.51 96.38 73 71

Outage 3 715.54 613.58 203.83 176.78 71 71

Outage 4 418.99 372.16 104.37 85.69 75 76

Table 2. GPS test outages east improvement

Outages EKF Our approach (EKF/NN) Improvement (%)

RMSE (m) MAE (m) RMSE (m) MAE (m) RMSE (m) MAE (m)

Outage 1 640.44 545.17 251.99 217.47 60 60

Outage 2 419.84 359.72 29.88 25.63 92 92

Outage 3 681.06 606.22 296.68 275.06 56 54

Outage 4 377.17 319.96 21.83 18.91 94 94

6 Conclusion

In this paper, we present an improved robust approach to estimate the real time
vehicle positioning required by various fleet management applications in the
context of a smart city. We propose the combination of EKF and NN based on
PSO to fuse data coming from a GPS and low cost DR integrated sensors. After
being trained on different dynamics and outage times, the NN are used to correct
the EKF position errors when no GPS signal is detected. Experimental results
with field test data demonstrate the ability of feed-forward NN trained with
PSO to learn and make reasonable predictions of EKF drifts during different
GPS blockage periods.

Future Work
Empirical results with simulated GPS outages showed very promising progress.
Nonetheless, the GPS quality degradation in real GPS outages is more complex
to handle. Further investigation is then needed to test and improve this hybrid
solution during real GPS outages, that is why we intend to implement our vehicle
prototype in future related works.
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