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Abstract. While almost all down-sampling based video codecs gain additional
compression at the expense of image degradation, we set a good example of
achieving both large compression and even better reconstruction quality. Such
progress is realized by: (i) minimizing the introduction of information loss with
a proposed decomposition-based adaptive down-sampling method so that more
reserved pixels can be allocated to image details where human visual perception
is more sensitive. Specifically, a modified content complexity measurement is put
forward and the optimum down-sampling rate is adaptively selected with a
customized formula; (ii) maximizing the information compensation via a content-
adaptive super-resolution algorithm, which is accelerated and optimized by two
stages of pruning to select the closest correlated dictionary pairs. Extensive
experiments support that, by using prevailing H.264 codec as benchmark, the
proposed scheme achieves 5 times more of additional compression and the recon‐
struction quality outperforms other state-of-the-art approaches, and even better
than decoded non-shrunken frames in human visual perception.
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1 Introduction

Currently, the ubiquitous application of digital mobile video and high-definition (HD)
visual enjoyment suffer severe bottleneck due to limited bandwidth. Though off-the-shelf
codecs, such as the prevailing H.264/MPEG-4 AVC [1] and one of its potential succes‐
sors, the H.265/HEVC (High Efficiency Video Coding) [2] have provided sharp compres‐
sion, further shrinkage is still required. Accordingly, the scaling based coding schemes,
which down- and up-sample video frames respectively prior and posterior to generic
codecs, stand out as a feasible division of ongoing research for compression improve‐
ment [3–6]. However, for pertinent literature, the up-sampling or essentially the super
resolution methods have been actively researched to compensate the discarded high
frequency details while little efforts were made to optimize the information loss that the
down-sampling process introduced. Most approaches simply applied a fixed down-
sampling rate to the whole frames and neglected the heterogeneity of human visual system
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in the tolerance of content information loss. As [7] suggested, to complex regions with
more details, human visual perception is more susceptible, thus less pixel loss should be
brought in. For this purpose, we proposed a decomposition-based adaptive down-sampling
scheme, which initially executes two successive decomposition, temporal and spatial, to
divide the input video into a number of fragment sequences. Each of them contains a
certain level of complexity and is appropriate to adopt diverse down-sampling rate. Specif‐
ically, to achieve the best possible trade-off between compression effectiveness (recon‐
struction quality at the decoder end) and compression efficiency (additional compression
ratios), we developed a local-homogeneity-based global metric (LHGM) as decomposi‐
tion criterion and paved the way for the selection of optimum down-sampling rate. The
resulting decomposed and down-sampled sub-sequences can be encoded separately by any
existing codecs. And the decoded counterparts will then be up-sampled and pasted
together with the along coded side information.

At the decoder, resolution enhancement and detail compensation critically count
on super-resolution (SR) reconstruction techniques, among which the dictionary- or
example-based learning methods protrude as the most active area over recent years.
By using learned co-occurrence prior knowledge between low resolution (LR) and
high resolution (HR) image patches, the learning-based methods effectively over‐
come a variety of deficits in other SR techniques, for instance, the over-smoothness
or ringing and jagged artifacts of interpolation-based methods [8] and the require‐
ment of multiple aliasing frames of the same scene in multi-frame methods [9]. A
typical dictionary-based example is the Neighbor Embedding (NE) method, which
utilizes the local geometry similarity between LR image patches and their HR coun‐
terparts [10]. Recent Nonnegative Neighbor Embedding (NNE) [11] and Anchored
Neighborhood Regression (ANR) [12] both stemmed from this hypothesis. Sparse
Coding (SC) represents another major direction of dictionary-based learning
methods. Yang et al. [13] exploited joint sparse representation for the input LR and
expecting HR image patches based on a pair of over-complete dictionaries and
produced better SR images with fine details. Zeyde et al. [14] built upon his frame‐
work and improved the execution speed by modifying the training approaches.
However, from extensive investigation, we found that the majority of dictionary-
based algorithms primarily focused on the selection of the nearest neighbors in NE
or the representation of sparse signals in SC, while the preparation for the diction‐
aries was often ignored, which make space for our exploration in this aspect.

Besides, due to the fact that receivers at the decoder end tend to evaluate video
quality based on direct visual impact rather than computed signal-to-noise ratio that
compared with the pre-encoding references, it’ s more reasonable to assess recon‐
structed image quality according to human visual system [7]. Given that, we adopted
the blind/no-reference image quality assessment model (BRISQUE) [23] in recon‐
struction evaluation, which was demonstrated statistically better than the full-refer‐
ence peak signal-to-noise-ratio (PSNR) and structural similarity index (SSIM) in both
computational efficiency and the correlation with human visual characteristics.
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The rest of the paper proceeds as follows: Sect. 2 is a fine description of the proposed
quadtree-based decomposition and adaptive down-sampling methods. Section 3 theor‐
atically formulized the content-adaptive sparse representation of super-resolution.
Section 4 reports our experimental results and Sect. 5 provides concluding remarks and
some ideas for future work.

2 Decomposition-Based Down-Sampling

The design of our decomposition-based down-sampling scheme was in view of the non-
uniform distribution of video content and the benefit of applying flexible down-scaling
rates to complexity-varied regions. Meanwhile, considering the computational cost, we
assumed that content distribution across video frames like color, texture and motion
remains relatively stable within one scene and appropriate to apply a unified decompo‐
sition pattern in accordance with the first frame or Intra-frame.

To achieve above ideas, we first utilized a content change detection similar to shot
cut technique [15] to temporally divide the input video into several scenes, or so called
V-units [16] (shown as Fig. 1 Temporal Decomposition). In each V-unit, the frame
number was limited (not more than twenty in our case) to make sure that a certain level
of content-consistency is maintained. Then we implemented a quad-tree decomposition
on the first frame of each V-unit. In this process, a content complexity measurement is
required for determining whether a frame patch should be divided.

Fig. 1. Illustration of decomposition-based adaptive down-sampling
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Existing complexity measurements [17–20], such as the variance-based [17] and
edge-based approaches [20], were primarily designed for the selection of partition mode,
which made them only suitable for the calculation of coding blocks. In that, directly
applying these formula to large frame patches would lead to astronomical figures. On
the contrary, MSE (mean square error) calculation was free of scale limitation while its
result value lack reliability on discrepant content characteristics and lack stability on the
change of luminance or chrominance even when the image textures remain consistent.
To solve the dilemma, we proposed a local-homogeneity-based global metric (LHGM)
in formula (1) to accurately reflect image details. Importantly, our algorithm is uncon‐
strained by image scales. At the same time, the result is unaffected by the variation of
image size.

LHGM(p) =
1

m × n

m∑

i=1

n∑

j=1

[
g(i, j) − gs(i, j)

]2
(1)

Here p represents a frame patch with the size of m × n, g(i,j) is the gray-level at pixel
(i,j), and gs(i,j) is the averaged gray-level in an s × s window centered at (i,j). The size
of s depends on the requirement of detail levels (in our application, it is empirically set
at 5 pixel).

To illustrate our quadtree-based hierarchical decomposition, we use p (Lp, Ip, Dp)
to represent a patch node in the tree structure. Here Lp indicates the decomposition level
of p, Ip indexes p at that level, and Dp gives the down-sampling rate that to be applied
at the current patch. By this definition, the original version of each first frame, like the
Intra-frame in V-unit 2 (Fig. 1 Spatial Decomposition) is labeled as a root node (Lp =
0). Next, we decompose it into four equal parts via a quad-tree decomposition and
calculate each of their content complexity with formula (1). If any resulting LHGM
value exceeds a predefined threshold (70 db), indicating the existence of detailed frag‐
ment(s), it will be replaced by the four partitions. Otherwise, the Intra-frame will be
treated as a leaf node and processed as a whole. Similarly, each partition with an over-
threshold LHGM value will be further decomposed iteratively until either its four sub-
patches are all smaller than the threshold or the highest level K (limited to video reso‐
lution and minimum coding size) is reached. For implementation efficiency, adjacent
leaf patches of the final partitions (the Intra-patches in Fig. 1.) that belong to the same
complexity range (with the same Dp value) are merged together so that down-sampling
can be operated integratedly later. The Intra-merges in Fig. 1 displays the final decom‐
position pattern of V-unit 2 and succeeding Inter-frames can just follow this pattern.
Such process is named as Intra-Guide.

In general, patches at deeper tree levels contains more details and ought to be
compressed with larger down-sampling rates. Exception exist when a smooth area is
separated out due to the high LHGM value of its brother nodes. So during the selection
of adaptive down-sampling rate Dp, we synthetically considered both the quad-tree level
Lp and the the patch’s content complexity. Exact formula is given below:

Dp =

{
𝜕

K−Lp+1 LHGM(p) < threshold

𝜕
K−Lp LHGM(p) > threshold

(2)
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Where 𝜕 is a base number, deciding the scaling extent and can be adjusted according
to the limitation of bandwidth or the requirement of reconstruction quality.

3 Content-Adaptive Sparse Representation of Super-Resolution

Based on sparse signal representation, research on image statistics suggested that image
patches can be well-represented as a sparse linear combination of elements from an
appropriately chosen over-complete dictionary [13] as expressed below:

I = D𝛼 (3)

Where I ∈ Rn is a given image, 𝛼 ∈ Rk is a sparse vector with very few (<< k)

nonzero elements, and D ∈ Rn×k is an over-complete dictionary of k prototype signal-
atoms. Later, theoretical results from compressed sensing [21] demonstrated that under
mild conditions, the sparse representation of a HR patch can be correctly recovered from
its down-sampled version. Inspired by above facts, Yang et al. [13] designed their SR
approach in following steps: (i) given a set of HR images, jointly train two dictionaries
DH and DL for original patches and their down-sampled version; (ii) represent a LR input
patch IL by:

min‖𝛼‖1 s.t.‖‖F(DL𝛼) − F(IL)
‖‖

2
2 ≤ 𝜀 (4)

Where F is a feature extraction operator, which provides a constraint on how closely
the 𝛼 approximates DL; (iii) apply the LR sparse representation 𝛼 with DH to generate a
super resolved image patch.:

IH = DH𝛼 (5)

Since the reconstruction of IH is based on those HR training images, whose content
has the highest level of similarity to IH, it is crucial that the two training dictionaries DH

and DL be optimized. To this end, we proposed to analyze the input LR image IL and
extract its content features to select corresponding HR training images in the dictionary
preparation. In this way, the super-resolution process can be made adaptive to the content
of input video frames, and hence achieve the advantage that their reconstruction quality
can be further improved. The problem of training the two dictionaries DH and DL can
be formulated as:

DH = arg min
{DH ,C}

‖‖‖fH

(
T , IL

)
− DHC

‖‖‖
2
+ 𝜆‖C‖1 (6)

DL = arg min
{DL ,C}

‖‖‖fL

(
T , IL

)
− DLC

‖‖‖
2
+ 𝜆‖C‖1 (7)

Where C ∈ Rr×m is a coefficient matrix, r is determined by the dimension of selected
content features, the l1 norm ‖C ‖1 is used to enforce the extent of sparse, and T is the
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set of training image candidates. Finally, fH

(
T , IL

)
 and fL

(
T , IL

)
 are the sets of optimized

HR and LR image patches, the elements of which are derived through two stages of
pruning process.

For the first stage of pruning, we applied a texture descriptor [22], which is based
on three edge patterns, to facilitate the similarity based selection. The basic principle is
to examine two DCT coefficients X(0, 1) and X(1, 0) for every block of 8 × 8 pixels with
any DCT-based video compression technology and produce the following block-edge
patterns (BEP), Where 𝜆 is a threshold to control the number of edge patterns:

BEP =

⎧
⎪
⎨
⎪⎩

no_edge if max(|X(1, 0)|, |X(0, 1)|) < 𝜆

vertical_edge if |X(0, 1)| ≥ |X(1, 0)|)
horizontal_edge otherwise

(8)

The texture descriptor is then constructed via a histogram-based approach to pre-
select those training images in compressed domain, that are likely to produce good match
for training dictionaries [22].

The second stage of pruning is carried out at the image patch level, where direct
match among detailed content features out of SIFT is implemented. Specific process is
described as follows:

eH

(
T , IL

)
= PH

(
arg min

xi∈T

{
d
[
SIFT

(
xi

)
, SIFT

(
IH

)]})
(9)

eL

(
T , IL

)
= PL

(
arg min

xi∈T

{
d
[
SIFT

(
xi

)
, SIFT

(
IL

)]})
(10)

Where PH(.) and PL(.) are two operators that segment the image into HR patches and
LR patches, respectively. d(.) is the Euclidean distance, which is used to measure the
similarity between the SIFT descriptors of the training image candidate xi and the input
image patches IL or IH.

4 Experimental Results

To evaluate the proposed additional compression algorithm, we carried out extensive
experiments on video sequences with various sizes, mostly VGA (640 × 480p), SD
(1280 × 720p) and HD (1920 × 1080p). The down-sampling rates that we adopted ranged
from 2 to 8, depending on the level of content complexity. For each video frame, both
of their original and down-sampled versions were encoded by JM codecs with 5 QP
parameters (12, 18, 24, 30, 36). After the decoder, those down-scaled frame patches
were enlarged with proposed SR method and 4 additional state-of-the-art SR methods
that we mentioned in Introduction. Their eventual recovery quality were compared
together with h.264 directly reconstructed, non-downsampled frames in terms of
BRISQUE value.
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Table 1. summarized the experiment results from 3 video samples with the size of
VGA, SD and HD separately. And each BRISQUE value was an average of 120 video
frames. As shown in Table 1, all of the super resolution methods provide competitive
performance, among which our proposed is obviously the best, even outperforms the
h.264 directly decoded non-shrinked ones. Especially in case of large QP values where
transformation coefficients are quantified with coarse parameters, our super resolution
method exhibits remarkable compensation effect for high frequency information loss.
To more clearly demonstrate the promotion of restoration quality with our method, we
appended the multiple spline curves of QP vs. BRISQUE value for the listed methods
in Fig. 2.

Table 1. BRISQUE value of control methods and our proposed.

BRISQUE QP h.264 Proposed Zeyde ANR NE NNLS
VGA 12 0.8697 0.8379 0.7690 0.7647 0.7641 0.7669

18 0.8380 0.8389 0.7528 0.7519 0.7500 0.7531
24 0.7965 0.8241 0.7301 0.7269 0.7258 0.7294
30 0.7539 0.8064 0.7073 0.7039 0.7023 0.7060
36 0.6460 0.7301 0.6176 0.6161 0.6162 0.6185

SD 12 0.5773 0.6130 0.5294 0.526 0.5341 0.5282
18 0.6037 0.6128 0.5358 0.5335 0.535 0.5345
24 0.5824 0.6095 0.5296 0.5289 0.5298 0.5296
30 0.5295 0.5887 0.5064 0.5053 0.5070 0.5067
36 0.4671 0.5413 0.4507 0.4512 0.4504 0.4514

HD 12 0.6375 0.6877 0.6053 0.6007 0.6042 0.6138
18 0.6425 0.6859 0.6072 0.6035 0.6087 0.6180
24 0.6101 0.6805 0.5993 0.5947 0.6005 0.6086
30 0.5560 0.6526 0.5699 0.5648 0.5705 0.5779
36 0.4839 0.5897 0.5041 0.4995 0.5034 0.5096

Besides above quantitive valuation, figurate examples (the original frame, h.264
decoded, proposed reconstructed and one best example of other four contrast methods
reconstructed frame) are presented in Fig. 3. It can be seen that our proposed is obviously
the clearest.

The original size of 3 video sequences and the size of their bitstream that respectively
compressed by h.264 codec and our scheme are listed in Table 2. Compared with h.264,
our proposed gain an add-on compression of over 5 times in average, indicating that if
our proposed codec is applied to telecommunication, the transfer speed will be improved
by more than five times. In terms of storage, application of the proposed codec will give
us additional savings of about five sixths of the overall storage space.
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Fig. 2. BRISQUE vs. QP value of h.264, our proposed and 4 control methods
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Fig. 3. Illustration of reconstruction frames
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Table 2. Averaged data size of original video, compressed bitstream via h.264 and our proposed
scheme, as well as the add-on compression ratio.

Data size Original (KB) QP h.264 (KB) Proposed
(KB)

Add-on

VGA 20172 12 700 217 3.23
18 389 120 3.24
24 190 61 3.14
30 86 28 3.01
36 37 12 3.00

SD 37800 12 1132 126 8.98
18 623 72 8.65
24 315 37 8.51
30 148 18 8.22
36 64 8 8.00

HD 60723 12 2632 542 4.86
18 1229 284 4.33
24 548 139 3.95
30 220 70 3.15
36 107 36 2.99

5 Conclusion

In this paper, we designed an adaptive video compression technique on top of existing
codecs for achieving additional contraction, accelerated transformation and also excel‐
lent reconstruction quality. The performance discrepancies in aspects of additional
compression ratio and reconstruction quality may be associated with differential video
resolutions, content complexity or other video characteristics, which remain to be
researched in future work.
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