
Why Hackers Love eHealth Applications

Rohit Goyal1 and Nicola Dragoni1,2(B)

1 Technical University of Denmark (DTU), Kongens Lyngby, Denmark
rgoyal.pec@gmail.com, ndra@dtu.dk
2 Örebro University, Örebro, Sweden

Abstract. The tsunami of Internet-of-Things and mobile applications
for healthcare is giving hackers an easy way to burrow deeper into our
lives as never before. In this paper we argue that this security disaster
is mainly due to a lack of consideration by the healthcare IT industry
in security and privacy issues. By means of a representative healthcare
mobile app, we analyse the main vulnerabilities that eHealth applications
should deal with in order to protect user data and related privacy.

1 Introduction

In February 2015, 78.8 million of Anthem1 customers were hacked. This has
been the largest healthcare breach so far, and it opened the floodgates on a
landmark year. According to the Office of Civil Rights under Health and Human
Services2, more than 113 million medical records were compromised in 2015. This
security disaster was further validated by Gemalto, whose report on data breach
worldwide for the first half of 2015 [6] showed that the healthcare industry is
taking the lead with 84.4 million total records lost. In this paper we argue that
the main reason behind this alarming situation is that security and privacy are
not seriously taken into account by the healthcare IT industry yet. Security and
privacy are seen only as a patch to be applied in case of discovered information
leakage, never as key design features that should be considered from the very
first system design phase and throughout all the healthcare IT system life cycle.

Contribution of the Paper. In order to provide a concrete example of our argu-
ment, in this paper we perform a security and privacy analysis of one of the
most promising healthcare mobile system under development in Sweden, namely
RAPP (Development of the Recovery Assessments by Phone Points) [7]. RAPP
is a healthcare mobile and Web system for tracking the health of patients post
surgery and assist them with the required care. The portal is accessible through
a Web and mobile application which records patient’s responses to a set of sur-
vey questions related to their recovery process. The responses are sent to the
server which also provides administrative access to the healthcare organization.
The RAPP architecture is very common to all the applications in the health-
care IT domain, which makes RAPP a perfect candidate for our investigation of
1 https://www.anthem.com.
2 https://ocrportal.hhs.gov/ocr/breach/breach report.jsf.

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2016

M.U. Ahmed et al. (Eds.): HealthyIoT 2016, LNICST 187, pp. 58–63, 2016.

DOI: 10.1007/978-3-319-51234-1 9

https://www.anthem.com
https://ocrportal.hhs.gov/ocr/breach/breach_report.jsf


Why Hackers Love eHealth Applications 59

key security and privacy issues in healthcare mobile applications. However, it’s
important to stress that we are using RAPP as case study only, while the out-
come of the analysis is sufficiently general to be applied to a generic healthcare
mobile system, as the number of recent security and privacy breaches worldwide
prove.

Methodology and Outline of the Paper. We consider a patient Bob who had
surgery and has been relieved from the hospital for recovery at his home. The
hospital has provided him access to the RAPP system with credentials con-
taining his username and password. He has been asked to use the Web based
interface or the application installed in his smartphone. In Sects. 2, 3, 4, 5 and
6, we look into the security implications of this system and how Bob’s privacy
could be compromised due to system vulnerabilities. In Sect. 7 we then sum up,
providing basic security/privacy recommendations for developing healthcare IT
applications.

2 Username and Password

Attack Scenario. An attacker Charlie gets the information that hospital is
using 4 digit usernames and passwords for authentication. He decides to hack
into the system by impersonating some users and sending rogue survey responses
to the hospital administrator, thus interrupting the usual service and causing
unnecessary confusion. His goal could also be a denial of service to the legitimate
users who need service from the hospital. To achieve his goal, he uses a simple
tool from Internet to try all combinations of 4 digit usernames and passwords.

Technical Description. In RAPP, username and password (both 4-digit
numeric strings) are used for authenticating users in the system. Both have
a very small search space of depth 10 and length 4 which makes them vulnerable
to brute force attacks. An online tool GRC [11] estimated that 11 s would be
required to break this password (with 1000 guesses per second) if the attacker
knows the search space. This design choice is very weak from security standpoint.

Recommendations. It is recommended that systems use more complex pass-
words with greater length. The security of the passwords is greatly enhanced by
use of lower and upper case characters and special symbols. A detailed guide
about the password authentication can be found at OWASP Web page [1].

3 User Authentication Workflow

Attack Scenario 1. Bob decides to notify the hospital authorities about his
condition after the surgery. When he tries to log in into the system, he realizes
that he has forgotten his credentials. There seems to be no way for him to retrieve
the forgotten password.

Attack Scenario 2. Bob’s computer crashed all of a sudden due to some techni-
cal problems. He borrows his neighbor Charlie’s laptop to request help from the



60 R. Goyal and N. Dragoni

hospital authorities. He logs in into the system and submits the survey response.
He realizes that there is no option to log out from the system. He is not sure if
he should return Charlie’s laptop with his account logged in.

Technical Description. The systems that use password authentication need to
provide a secure mechanism to the user to retrieve passwords via email or phone
in case they forget it. This is important to ensure the uninterrupted service to
the user. Once the user is logged in, he would want to log out from the system
when he is done. The log out functionality ensures that the users can share their
systems with other people which is a quite common use case.

Recommendations. The login page should provide a secure procedure for a
user to retrieve or change his/her username or password, for instance by email
or a security code on the mobile phone. The Web site should have logout func-
tionality which allows users to log out from the system after each session.

4 Network Communication

Attack Scenario. Bob has a wireless Access Point configured in his house
with weak or no security. An attacker Charlie who lives in the next house is
always sniffing neighbors’ wireless network traffic for privacy invasion. Bob opens
the RAPP Website, fills the survey response and submits it. Charlie who was
listening to this traffic using wireshark or similar tools would be able to see all
the communication between Bob and the RAPP server. He could also replay or
modify the contents of the request. In this way, the security and privacy of Bob
is compromised without his awareness.

Technical Description. The RAPP client-server communication is based on
API calls for logging in users and sending survey responses to the server. The
following experiment has been conducted to monitor the traffic between the
end points: an HTTP proxy software, known as Charles proxy [2], has been
installed on the client machine listening to HTTP traffic on port 8070. The
Web browser is configured to forward its HTTP traffic to localhost on port
8070. The target domain is requested by entering the URL in the address bar.
The network requests to the target domain can be seen in the proxy interface
along with header information and responses. It has been found that the client
and server communicate over HTTP protocol. This application level protocol is
inherently insecure because the communication is not encrypted. The attacker
could sniff the traffic and read/modify/replay the contents of the requests and
responses. The username and password are transmitted in clear text. This is a
major privacy leak. Also, since the request is made on HTTP, the server is not
authenticated before starting the communication. This could lead to man in the
middle attack [3].

Recommendations. The communication should be protected by means of the
HTTPS protocol [10], in order to have a secure channel between client and server.
The major goals of the protocol are to authenticate the server and maintain



Why Hackers Love eHealth Applications 61

privacy and integrity of the data exchanged. The server is authenticated by use of
trusted Certificate Authority signed certificates providing resilience against man-
in-the-middle attacks [5]. The confidentiality and integrity of the communication
is achieved by encryption and use of digital signatures. The current standard for
certificate keys for Public Key Infrastructure (PKI) is 2048 [12].

5 Local Storage

Attack Scenario 1. Bob is not feeling well after he got back home from surgery.
He decides to notify his condition to the hospital authorities. He opens the
browser and logs in into the RAPP Web portal. He fills out the survey responses
but does not submit it immediately. Meanwhile, his friend Charlie visits him in
his house. Charlie who is an evil neighbor opens Bob’s computer and accesses
his private information from the browser Local Storage. Bob’s privacy gets com-
promised due to the saved survey responses in the browser Web storage.

Attack Scenario 2. RAPP server gets infected by malicious javascript code.
When Bob loads the Website, the javascript accesses browser’s local Web storage
and redirects Bob to the malicious site. Bob’s private data and authentication
information gets compromised.

Technical Description. The local offline storage in browser (also known as
Web storage) is used by Websites to save some data. This data is accessible to
the user with local privileges. It has been found that the RAPP server stores
the authentication ticket and the survey results in the Web storage. According
to OWASP guidelines, it is recommended not to store any sensitive information
in the local storage [9], as vulnerable to cross site scripting attacks [4].

Recommendations. The patient survey data can be stored in session storage
rather than local storage since this information is not required for persistent use
and is relevant only for the current session. As soon as the browser tab is closed,
the session would be discarded. The auth token should be saved as a cookie
rather than a key value pair in local storage. This because a cookie can be set
with an expiry date, invalidating the user after some time. Though a cookie can
be set forever until the browser cookies are cleared, it still gives more control to
the administrator of the Web site. Moreover, the Web storage can be vulnerable
to cross site scripting attack, thus exposing the auth token or session identifier to
the attacker via malicious javascript. Also, the cookie can be set with HttpOnly
flag which does not allow javascript to access it. Thus, only the target domain
can access the cookie information.

6 Information Gathering

Web Server Fingerprinting. The knowledge of Web server, database, frame-
works, etc..., used by a Web site gives a big advantage to the attacker to exploit
known vulnerabilities in the specific version of the software or take advantage



62 R. Goyal and N. Dragoni

of possible misconfigurations. We did 2 simple experiments to highlight how it
is easy to leak information. In the first experiment, we have pinged the RAPP
URL rapp-productiontest.nethouse.solutions. The ping response exposes
the server on which the Web application is hosted. The URL gives information
about the company, location of the server and hosting service provider. In the
second experiment we have configured a Charles proxy on the browser, then
visited the same RAPP URL and monitored the traffic on proxy interface. The
response headers for the request expose information about the Web server, Web
application framework, its version, and several other similar technical details.

Recommendations. The server response headers could be disabled or obfus-
cated to prevent the leakage of important information. The exact steps to dis-
able these headers would depend on the server and framework. For example,
ASP.NET version header could be disabled by turning the flag “enableVersion-
Header” in project’s web.config to “false”. By making these changes in the con-
figuration, the developer could test the Web site again using the tools and make
sure that only the necessary information is sent in the response headers.

Cookie Information. The RAPP admin portal sets the cookie when the hospi-
tal admin logs in into the portal. The authentication cookie is stored with cookie
name as “.ASPXAUTH”. The cookie should not reveal any information related
to how it is generated. Otherwise, it makes it easier for the attacker to exploit
vulnerability of a specific framework.

Recommendations. The cookie should not reveal any other information except
the token. Also, MSDN documentation suggests the usage of “requireSSL” for
forms posting cookie information [8]. The cookie is sent by the browser only to
a secure page that is requested using an HTTPS URL.

Information Leakage. The Web site should not leak any important informa-
tion related to database in the authentication step. Indeed, any specific informa-
tion helps the attacker to deduce more information about the system. In one of
the authentication attempts on RAPP patient Website using admin credentials,
we receive the error message “Only patients can log in to the app”. This mes-
sage provides more information than required. An attacker can deduce that the
credentials might belong to non-patient user roles. The RAPP hospital admin
portal also responds with similar error messages.

Recommendations. All kinds of errors regarding log in failure should convey
only the generic information e.g. “Username or password is incorrect”.

7 Conclusion

The tsunami of Internet of Things and mobile applications for healthcare is not
currently supported by adequate privacy and security measures, as shown by the
increasing number of health data breaches in the last few years. This paper calls
the healthcare IT industry to take security and privacy into serious consideration



Why Hackers Love eHealth Applications 63

and to raise the stakes against well known security and privacy vulnerabilities.
To show a concrete example of what kind of vulnerabilities an healthcare system
should deal with, we have done a security and privacy analysis of the RAPP
mobile healthcare system. As key outcome of this analysis, there are various
basic principles and recommendations that should be taken into consideration
while developing healthcare applications. We summarise these findings below.

– The user ids and passwords should follow the technical standards in terms of
length, inclusion of special characters etc.

– The user log in and out should be implemented according to the use cases.
– The network communication should take place over HTTPS only.
– The authentication token should be stored safely in the browser.
– The session related information should be stored in the browser session storage.
– The Web server should not leak unnecessary information in the headers or

special requests.

By considering these basic security issues from the very beginning of the
application design and implementation, the final system will result significantly
more secure and trustworthy, reducing the impressive numbers of successful
attacks that have recently involved the healthcare industry.

References

1. OWASP: Authentication Cheat Sheet, May 2015. https://www.owasp.org/index.
php/Authentication Cheat Sheet

2. Charles proxy, May 2015. https://www.charlesproxy.com/
3. Conti, M., Dragoni, N., Lesyk, V.: A survey of man in the middle attacks. IEEE

Commun. Surv. Tutorials (2016). doi:10.1109/COMST.2016.2548426
4. Cross-site Scripting (XSS), May 2015. https://www.owasp.org/index.php/

Cross-site Scripting (XSS)
5. Description of the Server Authentication Process During the SSL Handshake, May

2015. https://support.microsoft.com/en-us/kb/257587
6. Gemalto: First Half Review 2015, May 2015. http://www.gemalto.com/brochures

-site/download-site/Documents/Gemalto H1 2015 BLI Report.pdf
7. Jaensson, M., et al.: The development of the recovery assessments by phone points

(RAPP): a mobile phone app for postoperative recovery monitoring and assess-
ment. JMIR mHealth uHealth 3(3), e86 (2015)

8. To, H.: Protect Forms Authentication in ASP.NET 2.0, May 2015. https://msdn.
microsoft.com/en-us/library/ff648341.aspx

9. HTML5 Security Cheat Sheet, May 2015. https://www.owasp.org/index.php/
HTML5 Security Cheat Sheet

10. HTTPS protocol, May 2015. https://en.wikipedia.org/wiki/HTTPS
11. Password strength, May 2015. https://www.grc.com/haystack.htm
12. PKI (Public Key Infrastructure), May 2015. http://searchsecurity.techtarget.com/

definition/PKI

https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.owasp.org/index.php/Authentication_Cheat_Sheet
https://www.charlesproxy.com/
http://dx.doi.org/10.1109/COMST.2016.2548426
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://support.microsoft.com/en-us/kb/257587
http://www.gemalto.com/brochures-site/download-site/Documents/Gemalto_H1_2015_BLI_Report.pdf
http://www.gemalto.com/brochures-site/download-site/Documents/Gemalto_H1_2015_BLI_Report.pdf
https://msdn.microsoft.com/en-us/library/ff648341.aspx
https://msdn.microsoft.com/en-us/library/ff648341.aspx
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://www.owasp.org/index.php/HTML5_Security_Cheat_Sheet
https://en.wikipedia.org/wiki/HTTPS
https://www.grc.com/haystack.htm
http://searchsecurity.techtarget.com/definition/PKI
http://searchsecurity.techtarget.com/definition/PKI

	Why Hackers Love eHealth Applications
	1 Introduction
	2 Username and Password
	3 User Authentication Workflow
	4 Network Communication
	5 Local Storage
	6 Information Gathering
	7 Conclusion
	References


