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Abstract. The advances in IoT and wearable sensors enable long term moni-
toring, which promotes earlier and more reliable diagnosis in health care. This
position paper proposes a probabilistic method to address the challenges in
handling longitudinal sensor signals that are subject to stochastic uncertainty in
health monitoring. We first explain how a longitudinal signal can be transformed
into a Markov model represented as a matrix of conditional probabilities. Fur-
ther, discussions are made on how the derived models of signals can be utilized
for anomaly detection and classification for medical diagnosis.
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1 Introduction

In recent years there has been rising interest in wearable sensors for personal health
care [1]. Integrating these devices with wireless communication provided by IoT [2] is
hopeful to create new technology that would have significant impact on the way
clinical monitoring is performed nowadays. Particularly IoT provides a convenient
means of transmitting and recording long term biological signals, which convey much
richer information than conventional lab-test based static measurements. Utilizing
dynamic longitudinal data is beneficial to promote earlier and more accurate diagnosis
results for future health monitoring systems.

However, longitudinal monitoring in health care faces two major challenges. The
first lies in the big data volume that is collected continuously. There is a gap between
the rate at which data become available and our ability to interpret and handle them. It
is crucial to develop novel data analysis and mining tools to extract concise information
and identify abnormality in real-time during the monitoring of the subject.

The second challenge arises from the inherently stochastic nature of data evolution
in health monitoring. It is important to characterize the truly dynamic property of
temporal patterns while ignoring random triviality in data analysis. How to represent
uncertain characteristics residing in data and how to utilize such uncertain information
in reasoning/learning is a key issue for reliable (anomaly) detection and diagnosis.

This position paper aims to suggests a probabilistic method to address the above
two challenges. The proposed roadmap consists of three consecutive stages. The first is
to convert original, real-valued signals into shorter symbolic time series. In the second
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stage, the converted time series data are further transformed into a concise matrix to
capture the stochastic and dynamic property of the underlying process. Finally, in the
third stage, different matrices (derived from original sensor signals) are compared with
each other in order to detect significant change of data transition patterns as well as to
identify possible health problems. We hope that the presented work would offer an
initial step towards the development of a useful framework to tackle uncertain and
longitudinal data profiles in health monitoring.

The remainder of the paper is as follows. Section 2 presents the ways in which a
longitudinal signal can be modeled into a concise matrix. Section 3 discusses how such
matrices can be utilized for anomaly detection and diagnosis in health monitoring.
Finally, the paper is concluded in Sect. 4.

2 Concise Modeling of Longitudinal Signals

This section explains how a longitudinal signal can be compressed by a concise model.
It is accomplished by the following two steps: (1) converting the original signal into a
symbolic series; (2) modeling the symbolic series with a matrix of pattern transition
probabilities.

2.1 Converting Signal into Symbolic Time Series

The first step in our solution is to convert the sampling-point based representation of
the signal into an interval-based representation. An interval consists of a set of con-
secutive sampling points and thus it encompasses multiple sampling periods in the time
dimension. Subsequently, data within an identical interval have to be generalized into
one symbolic value; the symbolization is conducted via discretization of the range of
possible values of the signal. Next we shall outline three approaches that can be used in
practice to convert a primary numerical signal into a shorter time series profile.

Symbolic Approximation was proposed in [3], in which the whole duration of the
signal is divided into equally sized intervals, i.e., each interval encompasses the same
amount of sampling periods. The data in each interval is averaged into a mean value,
thereby creating an intermediate sequence of real numbers summarizing signal
behaviors in the consecutive time intervals. This sequence is termed as PAA (Piecewise
Aggregate Approximation) of the original signal. Then the PAA sequence is further
transformed into a symbolic form by mapping the real numbers in it into corresponding
symbols.

Temporal Abstraction [4, 5] was proposed to derive high level generalization of
data from time-stamped representations towards interval-based interpretations. Basi-
cally this is achieved by aggregating adjacent entities falling in the same region into a
cluster and summarizing behaviors in this cluster with a concept (symbol) corre-
sponding to the region. Thereafter, arranging concepts of clusters according to the order
of their appearances produces a required symbolic time series.

More specifically, the tasks of temporal abstraction can be performed on state
abstraction or trend abstraction. The former focuses on the measured values themselves
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to extract intervals associated with qualitative concepts such as low, normal, and high,
while the latter focuses differences between two neighboring records to discover pat-
terns of changes such as increase, decrease, and stationarity in the series. Obviously
trend abstraction is equivalent to applying state abstraction to the secondary series of
differences derived from the primary signal of measurements.

Alternatively, symbolic time series can also be obtained via Phase-Based Pattern
Identification, as suggested in [6]. It is motivated by the fact that sometimes a lengthy
sensor signal from health monitoring may comprise a series of phases and every phase
has its importance to identify its property (pattern) alone. In such cases, we need to
separate the profile of the signal into a set of sub-signals with each of which corre-
sponding to a phase inside the whole duration. As sub-signals are shorter and simpler, it
would be relatively easy to classify their patterns using traditional signal processing
and machine learning approaches. The final symbolic series is constructed by com-
bining the patterns of sub-signals in terms of the order of appearance, which provides a
compact and abstract representation of the evolution of data in the whole signal profile.

2.2 Characterization as Markov Model

After conversion of the primary signal as stated in Subsect. 2.1, we acquire a symbolic
time series x(1), x(2), …, x(t), …, x(n), in which an element x(t) = Si reflects the fact
that the process under monitoring is in state (symbol) Si at time step t. We have to focus
on transitions of states between adjacent time steps rather than single symbolic values
for characterizing the evolution of data in the time series.

Since this time series originates from a stochastic process in health monitoring, we
suggest using the Markov model to depict the uncertain transitions in it. According to
the Markov property, the probability for the state at time step t + 1 is only dependent
on the state at time step t, regardless of the states in the previous time steps, i.e.,

P xðtþ 1Þ ¼ SjjxðtÞ ¼ Si; xðt � 1Þ ¼ Sk; � � �
� � ¼ P xðtþ 1Þ ¼ SjjxðtÞ ¼ Si

� � ð1Þ

Equation (1) implies that only transitions between two successive time steps are
required in the model of the symbolic time series.

Let {S1, S2, …., SM} be the set of possible states (symbols) of the process moni-
tored for health care. We use aij (i, j = 1, 2, …, M) to denote the probability for the
process to move from state Si to state Sj in two consecutive time steps. Hence aij is
defined as a conditional probability:

aij � P xðtþ 1Þ ¼ SjjxðtÞ ¼ Si
� � 8t ð2Þ

This conditional probability in Eq. (2) can simply be calculated as the ratio of the
number of transitions from state Si to Sj to the number of transitions starting from Si in
the series.

Finally, the stochastic Markov model of the symbolic time series can be formulated
as a concise matrix as follows:
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G ¼
a11 a12 � � � a1M
a21 a22 � � � a2M
� � � � � � � � � � � �
aM1 aM2 � � � aMM

0
BB@

1
CCA ð3Þ

with aij � 0 and
PM
j¼1

aij ¼ 1 8i
where the elements in row i reveal the probability distribution for the next state after
state Si. Note that the size of the matrix is merely determined by the number of states
(or symbols), which is independent of the length of the time series. This offers an
attractive opportunity of strong data reduction to benefit data storage and handling in
the health monitoring system.

3 Anomaly Detection and Diagnosis

This section addresses how the model of the symbolic time series can be utilized for
anomaly detection and diagnosis in health monitoring. First we shall explain the the
ways of calculating the distance between matrices of time series in Subsect. 3.1. Then,
in Subsect. 3.2, we discuss how the developed distance metric can be employed to
support detection and classification of abnormal situations.

3.1 Measuring the Distance Between Two Models

Our goal is to evaluate the distance between two symbolic time series cases that are
represented by matrices G and G0 respectively. As each row in these matrices represents
a distribution of probabilities of state transition, we first calculate the distances for pairs
of probability distributions from the two matrices. Then the distances between prob-
ability distributions for various starting states are aggregated to achieve an overall
dissimilarity between the two models of time series.

The matching of two probability distributions can be performed in terms of relative
entropy or information gain. Hence we apply Jeffreys divergence (J-divergence) [7] to
quantitatively distinguish two probability distributions in comparison. Suppose that
TBðiÞ ¼ ai1; ai2; � � � ; aiM½ � and TB0ðiÞ ¼ a0i1; a

0
i2; � � � ; a0iM

� �
are two probability distri-

butions described in the ith rows of G and G0 respectively, the J-divergence between
TB(i) and TB0 ið Þ is formulated as follows:

J TB ið Þ; TB0 ið Þð Þ ¼ PM
j¼1

aij � log aij
a0ij

� �
þ PM

j¼1
a0ij � log

a0ij
aij

� 	

¼ PM
j¼1

aij � a0ij
� 	

� log aij
a0ij

� 	 ð4Þ

For acquiring the overall distance between matrices (representing the time series),
the values of J-divergence on different probability distributions have to be combined.
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If we deem probability distributions for various starting states are equally important, we
can simply average the J-divergence values derived from every pair of probability
distribution in G and its counterpart in G0. Otherwise, we can define the weighted
average of the J-divergence values as the final distance metric, where the weights
reflect the importance of different probability distributions.

Further, the weights for the probability distributions can be determined automati-
cally from a set of time series models (matrices) with known classes. Our idea, inspired
from the work in [8], is that we retrieve the nearest models using a single J-divergence
index and then we base the quality of retrieved models to assess the importance of the
probability distribution, on which the J-divergence value is derived. More concretely,
for every model in the collection, a set of nearest models are retrieved in terms of the
J-divergence to yield a local alignment degree for that model. Secondly, the global
alignment degree is calculated as the mean of the local alignment degrees for all models
in the collection. Finally, the global alignment degree is assigned as the weight to the
probability distribution in inspection.

3.2 Distance-Based Decisions

The distance metric developed for time series models can be used for two purposes.
The first is to detect significant deviation of data evolution during the monitoring
process (anomaly detection). The second is to further identify the class of the abnormal
situation (if anomaly is detected) for medical diagnosis.

The anomaly detection can be made by comparing the model of time series in the
latest time window with that of the preceding window. If the distance between them is
sufficiently large, it indicates a potential abnormality since the probabilities of sate
transitions have changed significantly in the new time window. Of course, the size of
the window is an important parameter that affects the results of monitoring. One
heuristic to find a proper value for that parameter would be gradually increasing the
window size until the matrix of the time series becomes stable. Discovering optimal
window sizes for different phases of the signal may improve anomaly detection.

For identification of the class of an abnormal situation, we advocate the application
of case-based reasoning (CBR) which has been proved as a powerful methodology to
solve new problems by learning from previous experiences [9]. CBR is based on the
principle that similar problems have similar solutions. Therefore, given an abnormal
time series in the latest window, we measure the distances of its matrix and the
classified models (of time series) in the case library. The nearest models are thereby
retrieved, and we resort to the classes of the retrieved models as the foundation to
predict the class of the new abnormal situation. Feature selection [10] is sometimes
needed here to identify the most important elements of the models for comparison, and
fuzzy rule-based matching [11] can support more flexible criteria for assessment of the
discrepancy between two time series models.
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4 Conclusion

This paper puts forward a probabilistic method to deal with large data volumes in long
term monitoring in health care. The key in our work lies in the conversion of longi-
tudinal signals into shorter symbolic time series as well as depicting the stochastic
property of the symbolic series with a Markov model. As the size of the Markov model
only is related to the number of patterns rather than the length of the signal, it con-
tributes with a big reduction of the data that needs to be stored and processed. We also
illustrate that the Markov models derived from primary signals can be conveniently
utilized to detect and classify abnormality in signals during the monitoring process.

However, it should be admitted that Markov models only consider the current state
information. In the future work we are going to extend the current model to accom-
modate historical and contextual information to enable diagnosis and reasoning of
higher accuracy.
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